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Abstract. In this paper, we present a new two-stage fourth-order finite difference
weighted compact nonlinear scheme (WCNS) for hyperbolic conservation laws with
special application to compressible Euler equations. To construct this algorithm, apart
from the traditional WCNS for the spatial derivative, it was necessary to first construct
a linear compact/explicit scheme utilizing time derivative of flux at midpoints, which,
in turn, was solved by a generalized Riemann solver. Combining these two schemes,
the fourth-order time accuracy was achieved using only the two-stage time-stepping
technique. The final algorithm was numerically tested for various one-dimensional
and two-dimensional cases. The results demonstrated that the proposed algorithm
had an essentially similar performance as that based on the fourth-order Runge-Kutta
method, while it required 25 percent less computational cost for one-dimensional
cases, which is expected to decline further for multidimensional cases.
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1 Introduction

For a long time, the development of high-order numerical methods for hyperbolic conser-
vation laws has been actively discussed. Among various high-order methods, the finite
difference method (FDM), which can be constructed in a dimension-by-dimension man-
ner for uniform/curvilinear grid, has been appreciated for its simplicity, effectiveness,
and low computational cost [10].
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Considering FDM, many specific finite difference schemes have been proposed. It is
worth mentioning examples such as the finite difference center/upwind compact scheme
[9, 12], the finite-difference version of the weighted ENO (WENO) scheme [11, 19], and
the weighted compact nonlinear scheme (WCNS) [7].

Recently, the WCNS is becoming more widely used as it has been proven to have
important advantages, such as preserving freestream [5, 14], and satisfying geometric
conservation law [6]. Typically, the WCNS is used jointly with the method of lines,
which allows separating the spatial discretization from the time evolution. The spatial
discretization of the WCNS includes the following steps: (1) nonlinear reconstruction of
an arbitrary variable from a cell node to a cell edge, (2) evaluation of the numerical flux
on a cell edge, and (3) calculation of high-order central finite difference of the numerical
flux from a cell edge to a cell node. Once this discretization has been parsed, one may
apply an appropriate ordinary differential equation solver to achieve higher order tem-
poral accuracy. In this study we applied the high-order total variation diminishing (TVD)
Runge-Kutta schemes for this purpose.

However, similar to most of methods using the Runge-Kutta time-stepping approach
for time integration, generally, the WCNS will require using effective interpolation sten-
cils. Furthermore, as noted in [17], there is an order barrier for TVD Runge-Kutta meth-
ods with positive coefficients: they cannot be higher than the fourth-order accuracy.

In fact, it is reasonable to construct multistage multiderivative algorithms for time
integration [3]. Recently, the two-stage fourth-order time-accurate Lax-Wendroff (L-W)
time solver was introduced, particularly for application with the hyperbolic conservation
laws [13]. The two-stage L-W type time-stepping method is able to achieve fourth-order
time accuracy solely owing to the use of both flux derivative and its time derivative.
Previous works [4,8,15,16] have already demonstrated that this solver has advantages in
terms of its computational efficiency.

Therefore, it is beneficial to investigate how to implement this two-stage fourth-order
Lax-Wendroff type time solver in the WCNS. To the author’s knowledge, there has been
no previous research on this topic. In this work, we developed a new two-stage fourth-
order WCNS with application of compressible Euler equations.

The rest of the paper is organized as follows. In Section 2, we provide a brief review
of the two-stage fourth-order Lax-Wendroff time discretization method. In Section 3,
we describe in detail the specific algorithms of the proposed approach. Extension to
multidimensional nonlinear systems is also outlined in this section. Numerical results
are provided in Section 4 and conclusions are drawn in Section 5.

2 Two-stage fourth-order time-accurate solver

In this section, we briefly review the two-stage fourth-order Lax-Wendroff type time dis-
cretization method [13]. Let us consider the following time-dependent nonlinear hyper-


