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Abstract. The Poisson-Nernst-Planck (PNP) system is a widely accepted model for
simulation of ionic channels. In this paper, we design, analyze, and numerically vali-
date a second order unconditional positivity-preserving scheme for solving a reduced
PNP system, which can well approximate the three dimensional ion channel problem.
Positivity of numerical solutions is proven to hold true independent of the size of time
steps and the choice of the Poisson solver. The scheme is easy to implement without
resorting to any iteration method. Several numerical examples further confirm the
positivity-preserving property, and demonstrate the accuracy, efficiency, and robust-
ness of the proposed scheme, as well as the fast approach to steady states.
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1 Introduction

Biological cells exchange chemicals and electric charge with their environments through
ionic channels in the cell membrane walls. Examples include signaling in the nervous
system and coordination of muscle contraction, see [6] for a comprehensive introduction.
Mathematically the flow of ions can be modeled by drift-diffusion equations such as the
Poisson-Nernst-Planck (PNP) system, see e.g. [5, 7, 8, 12].

In this investigation we design, analyze and numerically validate positivity-preserving
algorithms to solve time-dependent drift-diffusion equations. As a first step, in this pa-
per we focus on a reduced model derived by Gardner et al. [12] as an approximation
to the full three dimensional (3D) PNP system. Let us first recall the full model and its
reduction.
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1.1 Mathematical models

The general setup in [12] is a flow of positive and negative ions in water in a channel
plus surrounding baths in an electric field against a background of charged atoms on the
channel protein. The distribution of charges is described by continuum particle densities
ci(x,t) for the mobile ions (such as K+,N+

a ,C++
a ,···). The flow of ions can be modeled by

the PNP system of m equations

∂tci=−∇· Ji, i=1,··· ,m; x∈Ω⊂R
3, t>0,

Ji =−(Di∇ci+ziµici∇ψ),

−∇·(ǫ∇ψ)=
m

∑
i=1

qici−eρ,

(1.1)

where Ji is the flux density, in which Di is the diffusion coefficient, µi the mobility coeffi-
cient which is related to the diffusion coefficient via Einstein’s relation µi=

Di
kBT0

, where kB

is the Boltzmann constant and T0 is the absolute temperature [6]. In the Poisson equation,
ǫ is the dielectric coefficient, qi the ionic charge for each ion species i, ρ= ρ(x) the per-
manent fixed charge density, and e the proton charge.The coupling parameter zi = qi/e.
In general, the physical parameters ǫ, µi and Di are functions of x. Let us mention that
the case of no permanent charge does not pertain to biological channels. Even channels
without permanent charge (in the form of so called acid and base side chains) have large
amounts of fixed charge in their (for example) carbonyl bonds (see, e.g., [17] and refer-
ences therein).

The derivation of the Nernst-Planck equation typically follows two steps, namely,
using the energy variation to obtain the chemical potential and then using Fick’s laws
of diffusion to attain the Nernst-Planck equation (see e.g. [2]). In the charge dynamics
modeled by the traditional NP equation, mobile ions are treated as volume-less point
charges. In order to incorporate more complex effects such as short-range steric effect
and long range Coulomb correlation, modifications of the PNP equations were derived
(see, e.g., [23] and references therein). Nonetheless, the scheme methodology proposed
in this paper can well be adapted to solve such modified PNP systems.

The 3D geometry of the ion channel can be approximated by a reduced problem along
the axial direction x, with a cross-sectional area A(x) [29,30]. Subject to a further rescaling
as in [13], the corresponding PNP system (1.1) reduces to the following equations

∂tci =
1

A(x)
∂x(A(x)Di(∂xci+zici∂xψ)), x∈Ω=[0, 1], t>0,

− 1

A(x)
∂x(ǫA(x)∂xψ)=

m

∑
i=1

zici−ρ(x), x∈Ω, t>0.

(1.2)

For ionic channels, an important characteristic is the so-called current-voltage relation,
which can characterize permeation and selectivity properties of ionic channels (see [1]


