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Abstract. In a general polygonal domain, possibly nonconvex and multi-connected
(with holes), the time-dependent Ginzburg–Landau equation is reformulated into a
new system of equations. The magnetic field B :=∇×A is introduced as an unknown
solution in the new system, while the magnetic potential A is solved implicitly through
its Hodge decomposition into divergence-free part, curl-free and harmonic parts, sep-
arately. Global well-posedness of the new system and its equivalence to the origi-
nal problem are proved. A linearized and decoupled Galerkin finite element method
is proposed for solving the new system. The convergence of numerical solutions is
proved based on a compactness argument by utilizing the maximal Lp-regularity of
the discretized equations. Compared with the Hodge decomposition method pro-
posed in [27], the new method has the advantage of approximating the magnetic field
B directly and converging for initial conditions that are incompatible with the external
magnetic field. Several numerical examples are provided to illustrate the efficiency of
the proposed numerical method in both simply connected and multi-connected nons-
mooth domains. We observe that even in simply connected domains, the new method
is superior to the method in [27] for approximating the magnetic field.
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1 Introduction

The time-dependent Ginzburg–Landau equation (TDGL) is widely used for numerical
simulations of vortex dynamics of superconducting density and magnetic field for type-
II superconductors [8,14,19,29]. In this model, the state of a superconductor is described
by a complex-valued order parameter ψ, a real vector-valued magnetic potential A, and
a real scalar-valued electric potential φ. In a two-dimensional domain, the TDGL can be
written as (with non-dimensionalisation)
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with the following notations of curl, divergence and gradient operators:
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The time-independent external magnetic field H is given, η and κ are positive physical
parameters, and ψ denotes the complex conjugate of ψ. The physically interesting quanti-
ties in this model are the magnetic field B=∇×A and the superconductivity density |ψ|2,
which satisfies 0≤|ψ|2≤1 and represents the superconducting state of a superconductor.
In particular, |ψ|2 = 1 indicates that the superconductor is in the superconducting state,
and |ψ|2 =0 indicates the normal state. If the superconductor occupies a domain Ω, then
the following physical boundary conditions hold:
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·n=0 on ∂Ω, (1.3)

∇×A=H on ∂Ω, (1.4)

A·n=0 on ∂Ω, (1.5)

where n denotes the unit outward normal vector on the boundary ∂Ω.

In addition to (1.1)-(1.2), one needs a gauge condition to determine the solution
uniquely [1, 12]. For example, the zero electric potential gauge φ = 0 and the Lorentz
gauge φ=−∇·A are often used for numerical simulations [10, 11, 20, 23, 33, 35, 36]. The
solutions under the different gauges are equivalent in producing the physical quantities
|ψ|2 and B (see [12]). In this paper, we focus on the Lorentz gauge φ =−∇·A, which


