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Abstract. A kernel-independent treecode (KITC) is presented for fast summation of
particle interactions. The method employs barycentric Lagrange interpolation at
Chebyshev points to approximate well-separated particle-cluster interactions. The
KITC requires only kernel evaluations, is suitable for non-oscillatory kernels, and re-
lies on the scale-invariance property of barycentric Lagrange interpolation. For a given
level of accuracy, the treecode reduces the operation count for pairwise interactions
from O(N?) to O(NlogN), where N is the number of particles in the system. The al-
gorithm is demonstrated for systems of regularized Stokeslets and rotlets in 3D, and
numerical results show the treecode performance in terms of error, CPU time, and
memory consumption. The KITC is a relatively simple algorithm with low memory
consumption, and this enables a straightforward OpenMP parallelization.
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1 Introduction

Consider the problem of evaluating the sum
N

M(Xi):Zk(Xi,Xj)f]‘, iZl,'-',N, (1.1)
j=1
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where u(x;) is a velocity (or potential or force) and {x;} CR¥ is a set of particles with
weights { f;}. Depending on the application, the velocity and weights may be scalars or
vectors, and the kernel may be a tensor. The kernel k(x,y) describes the interaction be-
tween a target particle x and a source particle y, and we are interested in non-oscillatory
kernels that are smooth for x #y and decay slowly for |[x—y|— oco. It is understood that
if the kernel is singular for x =Yy, then the sum omits the i = term.

These sums arise in particle simulations involving point masses, point charges, and
point vortices, as well as in boundary element methods where the particles are quadra-
ture points. Evaluating (1.1) by direct summation requires O(N?) operations which is
prohibitively expensive when N is large, and several fast methods have been developed
to reduce the cost. One can distinguish between two types of methods, particle-mesh meth-
ods in which the particles are projected onto a uniform mesh where the FFT or multigrid
can be used (e.g. P3M [29], particle-mesh Ewald [16], spectral Ewald [2], multilevel sum-
mation [9,27]), and tree-based methods in which the particles are partitioned into a hierar-
chy of clusters with a tree structure and the particle-particle interactions are replaced by
particle-cluster or cluster-cluster approximations (e.g. treecode [4], fast multipole method
(FMM) [24], panel clustering [26]).

Tree-based methods. The present work is concerned with tree-based methods that rely
on degenerate kernel approximations of the form,

k(x,y>~ki¢k(x>¢k<y>. 12)
=0

Such approximations can be classified as near-field/local or far-field/multipole depending
on their domain of validity in the variables x,y. The treecode originally used a far-field
monopole approximation for the Newtonian potential [4], while the FMM improved on
this by employing higher-order multipole and local approximations, in particular using
Laurent series for the 2D Laplace kernel and spherical harmonics for the 3D Laplace ker-
nel [24,25]. Later versions of the FMM used plane wave expansions for the 3D Laplace
kernel [10] and spherical Bessel function expansions for the Yukawa potential [23]. Meth-
ods based on Cartesian Taylor expansions were also developed for some common ker-
nels [13,15, 30, 36,38, 52,57].

Kernel-independent methods. The tree-based methods cited above rely on analytic
series expansions specific to each kernel and alternative approximation methods have
been investigated. An early example in this direction was an FMM for Laplace ker-
nels based on discretizing the Poisson integral formula [3], and this was followed by
a pseudoparticle method that reproduces the multipole moments for these kernels [39].
Later work developed approximations suitable for a wide class of non-oscillatory ker-
nels. One approach based on polynomial interpolation [32, section 11.4] has been applied
in the context of multilevel approximation [21], hierarchical matrices [7], and the black-
box FMM (bbFMM) [19]. An alternative method employed in the kernel-independent
FMM (KIFMM) uses equivalent densities [60,61], while other kernel-independent FMMs



