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Abstract. We study an identification problem which estimates the parameters of the
underlying random distribution for uncertain scalar conservation laws. The hyper-
bolic equations are discretized with the so-called discontinuous stochastic Galerkin
method, i.e., using a spatial discontinuous Galerkin scheme and a Multielement stochas-
tic Galerkin ansatz in the random space. We assume an uncertain flux or uncertain
initial conditions and that a data set of an observed solution is given. The uncer-
tainty is assumed to be uniformly distributed on an unknown interval and we focus on
identifying the correct endpoints of this interval. The first-order optimality conditions
from the discontinuous stochastic Galerkin discretization are computed on the time-
continuous level. Then, we solve the resulting semi-discrete forward and backward
schemes with the Runge-Kutta method. To illustrate the feasibility of the approach,
we apply the method to a stochastic advection and a stochastic equation of Burgers’
type. The results show that the method is able to identify the distribution parameters
of the random variable in the uncertain differential equation even if discontinuities are
present.
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1 Introduction

Uncertainties play a role in many socio-economic, biological or physical phenomena
which can be modelled with the help of partial differential equations (PDE) [4, 8, 12, 13,
19, 25, 31, 53]. In the recent years many approaches, e.g., methods based on Bayesian
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inversion, Monte Carlo algorithms or stochastic Galerkin schemes, were proposed to
quantify the uncertainties in order to account for them in predictions and simulations
[1, 2, 20, 26, 35, 47, 48, 52, 58, 65].

In this article we focus on hyperbolic conservation laws having uncertainties in pa-
rameters which arise, i.e., due to measurement errors and thus have non-deterministic
effects on the approximation of the deterministic problem. These uncertainties in the pa-
rameters can be modelled by random variables that follow an appropriate distribution
type. In general, it is difficult to prescribe the exact distribution parameters if measure-
ment errors are present. Therefore, our goal is to identify these distribution parameters
from observed data that forms a solution to the uncertain conservation law. This yields
the formulation of an optimization problem, whereas the hyperbolic partial differential
equation constraint poses severe difficulties both at the continuous and discrete level
since they typically form shocks even for smooth initial data when the flux function is
non-linear.

Another difficulty is raised by the fact that the typical solution spaces for hyperbolic
equations have no Hilbert space structure, therefore standard techniques for Optimal
Control with PDE constraints are not applicable. We therefore pursue a discretization
within the spatial and stochastic variable to formulate the identification problem in time-
continuous form. On the ODE level we follow the approach ’first optimize, then dis-
cretize’ motivated by the findings of [34]. This has the advantage that the state and the
adjoint problem can be solved with different techniques leading to higher efficiency.

Discretizing the conservation law within the stochastic domain, we consider Uncer-
tainty Quantification (UQ) methods [3,22,37,39,40,45,50] that aim to model the propaga-
tion of the uncertainty into the solution of uncertain equations. We distinguish between
the so-called non-intrusive and intrusive schemes. The most widely known non-intrusive
UQ method is (Multi-Level) Monte Carlo [13, 24, 30, 41], which is based on statistical
sampling methods that can easily be adopted to our problem setting but comes with
potentially high costs due to the repeated application of finite volume schemes. Another
approach is to employ a discretization in space which leads to a stochastic differential sys-
tem. Here one could try to apply an parameter identification in the spirit of [46]. Within
this article, we concentrate on an intrusive UQ method, namely the stochastic Galerkin
(sG) scheme, that involves modifications of the finite volume solver. The method relies
on the generalized Polynomial Chaos (gPC) expansion [1,14,60,63,64], thus expands the
solution in the stochastic variable and projects it on the space spanned by a truncated
orthonormal basis.

The biggest challenge of UQ methods for hyperbolic equations lies in the fact, that dis-
continuities in the physical space propagate into the solution manifold such that the poly-
nomial expansion of discontinuous data yields huge oscillations [7,47,49]. Therefore, the
authors of [61] introduced the so-called Multielement approach, where the random space
is divided into disjoint elements in order to define local gPC approximations. Further de-
velopments of this method can be found in [54, 59, 62]. Similar to this ansatz, we apply
a spatial discontinuous Galerkin discretization [15–17], where we expand the solution in


