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Abstract. We study the training process of Deep Neural Networks (DNNs) from the
Fourier analysis perspective. We demonstrate a very universal Frequency Principle
(F-Principle) — DNNs often fit target functions from low to high frequencies — on
high-dimensional benchmark datasets such as MNIST/CIFAR10 and deep neural net-
works such as VGG16. This F-Principle of DNNs is opposite to the behavior of Jacobi
method, a conventional iterative numerical scheme, which exhibits faster convergence
for higher frequencies for various scientific computing problems. With theories un-
der an idealized setting, we illustrate that this F-Principle results from the smooth-
ness/regularity of the commonly used activation functions. The F-Principle implies
an implicit bias that DNNs tend to fit training data by a low-frequency function. This
understanding provides an explanation of good generalization of DNNs on most real
datasets and bad generalization of DNNs on parity function or a randomized dataset.
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1 Introduction

Understanding the training process of Deep Neural Networks (DNNs) is a fundamental
problem in the area of deep learning. We find a common behavior of the gradient-based
training process of DNNs, that is, a Frequency Principle (F-Principle):
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DNNs often fit target functions from low to high frequencies during the training process.

In another word, at the early stage of training, the low-frequencies are fitted and as
iteration steps of training increase, the high-frequencies are fitted. For example, when a
DNN is trained to fit y=sin(x)+sin(2x), its output would be close to sin(x) at early stage
and as training goes on, its output would be close to sin(x)+sin(2x). Along with our pre-
vious works in [34], this paper is one of works that first discovery the F-Principle. In the
same time, another group † independently found the F-Principle (or spectral bias) [26]. F-
Principle was verified empirically in synthetic low-dimensional data with MSE loss dur-
ing DNN training [26, 34]. However, in deep learning, empirical phenomena could vary
from one network structure to another, from one dataset to another and could exhibit sig-
nificant difference between synthetic data and high-dimensional real data. Therefore, the
universality of the F-Principle remains an important problem for further study. Especially
for high-dimensional real problems, because the computational cost of high-dimensional
Fourier transform is prohibitive in practice, it is of great challenge to demonstrate the
F-Principle. On the other hand, the mechanism underlying the F-Principle and its impli-
cation to the application of DNNs, e.g., design of DNN-based PDE solver, as well as their
generalization ability are also important open problems to be addressed.

In this work, we design two methods, i.e., projection and filtering methods, to show
that the F-Principle exists in the training process of DNNs for high-dimensional bench-
marks, i.e., MNIST [22], CIFAR10 [21]. The settings we have considered are i) different
DNN architectures, e.g., fully-connected network, convolutional neural network (CNN),
and VGG16 [28]; ii) different activation functions, e.g., tanh and rectified linear unit
(ReLU); iii) different loss functions, e.g., cross entropy, mean squared error (MSE), and
loss energy functional in variational problems. These results demonstrate the universal-
ity of the F-Principle.

To facilitate the designs and applications of DNN-based schemes, we characterize a
stark difference between DNNs and the Jacobi method, a conventional numerical scheme
exhibiting the opposite convergence behavior — faster convergence for higher frequen-
cies. Numerical methods [5,7,31], such as well-known multigrid method [5,31], are devel-
oped to accelerate the convergence for low frequency. As the DNN-based schemes have
potential to solve high-dimensional problems [8, 13–15, 17, 19, 30, 32], the low-frequency
bias of DNN can be adopted to accelerate the convergence of low frequencies for compu-
tational problems.

We also intuitively explain with theories under an idealized setting how the smooth-
ness/regularity of commonly used activation functions contributes to the F-Principle.
Note that this mechanism is rigorously demonstrated for DNNs of general settings in a
subsequent work [23]. Finally, we discuss that the F-Principle provides an understand-
ing of good generalization of DNNs in many real datasets [37] and poor generalization
in learning the parity function [25, 27], that is, the F-Principle which implies that DNNs
prefer low frequencies, is consistent with the property of low frequencies dominance in
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