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Abstract. This paper quantitatively characterizes the approximation power of deep
feed-forward neural networks (FNNs) in terms of the number of neurons. It is shown
by construction that ReLU FNNs with width O

(
max{d⌊N1/d⌋, N+1}

)
and depth O(L)

can approximate an arbitrary Hölder continuous function of order α∈ (0,1] on [0,1]d

with a nearly tight approximation rate O(√
dN−2α/dL−2α/d

)
measured in Lp-norm for

any N,L ∈ N
+ and p ∈ [1,∞]. More generally for an arbitrary continuous function

f on [0,1]d with a modulus of continuity ω f (·), the constructive approximation rate

is O(√
dω f (N−2/dL−2/d)

)
. We also extend our analysis to f on irregular domains or

those localized in an ε-neighborhood of a dM-dimensional smooth manifold M⊆[0,1]d

with dM ≪ d. Especially, in the case of an essentially low-dimensional domain, we

show an approximation rate O(
ω f (

ε
1−δ

√
d
dδ
+ε)+

√
dω f (

√
d

(1−δ)
√

dδ

N−2/dδ L−2/dδ)
)

for

ReLU FNNs to approximate f in the ε-neighborhood, where dδ=O(
dM

ln(d/δ)
δ2

)
for any

δ∈(0,1) as a relative error for a projection to approximate an isometry when projecting
M to a dδ-dimensional domain.
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1 Introduction

The approximation theory of neural networks has been an active research topic in the
past few decades. Previously, as a special kind of ridge function approximation, shallow
neural networks with one hidden layer and various activation functions (e.g., wavelets
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pursuits [10, 46], adaptive splines [19, 55], radial basis functions [8, 18, 25, 53, 65], sigmoid
functions [7, 13–15, 29, 37, 38, 41, 45]) were widely discussed and admit good approxima-
tion properties, e.g., the universal approximation property [16,29,30], lessening the curse
of dimensionality [4, 21, 22], and providing attractive approximation rate in nonlinear
approximation [10, 18, 19, 25, 46, 55, 65].

The introduction of deep networks with more than one hidden layers has made sig-
nificant impacts in many fields in computer science and engineering including computer
vision [35] and natural language processing [1]. New scientific computing tools based on
deep networks have also emerged and facilitated large-scale and high-dimensional prob-
lems that were impractical previously [20,24]. The design of deep ReLU FNNs is the key
of such a revolution. These breakthroughs have stimulated broad research topics from
different points of views to study the power of deep ReLU FNNs, e.g. in terms of combi-
natorics [51], topology [6], Vapnik-Chervonenkis (VC) dimension [5,27,58], fat-shattering
dimension [2,34], information theory [54], classical approximation theory [4,16,30,62,67],
optimization [32, 33, 52] etc.

Particularly in approximation theory, non-quantitative and asymptotic approxima-
tion rates of ReLU FNNs have been proposed for various types of functions. For ex-
ample, smooth functions [23, 39, 43, 66], piecewise smooth functions [54], band-limited
functions [50], continuous functions [67], solutions to partial differential equations [31].
However, to the best of our knowledge, existing theories [17,23,39,43,48,50,54,63,66,67]
can only provide implicit formulas in the sense that the approximation error contains
an unknown prefactor, or work only for sufficiently large N and L larger than some un-
known numbers. For example, [67] estimated an approximation rate c(d)L−2α/d via a
narrow and deep ReLU FNN, where c(d) is an unknown number depending on d, and
L is required to be larger than a sufficiently large unknown number L . For another ex-
ample, given an approximation error ε, [54] proved the existence of a ReLU FNN with
a constant but still unknown number of layers approximating a Cβ function within the
target error. These works can be divided into two cases: 1) FNNs with varying width
and only one hidden layer [18, 25, 40, 65] (visualized by the region in in Fig. 1); 2)
FNNs with a fixed width of O(d) and a varying depth larger than an unknown number
L [44, 67] (represented by the region in in Fig. 1).

As far as we know, the first quantitative and non-asymptotic approximation rate of
deep ReLU FNNs was obtained in [62]. Specifically, [62] identified an explicit formulas
of the approximation rate

{
2λN−2α, when L≥2 and d=1,

2(2
√

d)αλN−2α/d, when L≥3 and d≥2,
(1.1)

for ReLU FNNs with an arbitrary width N ∈N
+ and a fixed depth L∈N

+ to approxi-
mate a Hölder continuous function f of order α with a Hölder constant λ (visualized in
the region shown by in Fig. 1). The approximation rate O(N−2α/d) is tight in terms
of N and increasing L cannot improve the approximation rate in N. The success of deep


