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Abstract. We propose a data fusion method based on multi-fidelity Gaussian process
regression (GPR) framework. This method combines available data of the quantity of
interest (QoI) and its gradients with different fidelity levels, namely, it is a Gradient-
enhanced Cokriging method (GE-Cokriging). It provides the approximations of both
the QoI and its gradients simultaneously with uncertainty estimates. We compare this
method with the conventional multi-fidelity Cokriging method that does not use gra-
dients information, and the result suggests that GE-Cokriging has a better performance
in predicting both QoI and its gradients. Moreover, GE-Cokriging even shows better
generalization result in some cases where Cokriging performs poorly due to the sin-
gularity of the covariance matrix. We demonstrate the application of GE-Cokriging
in several practical cases including reconstructing the trajectories and velocity of an
underdamped oscillator with respect to time simultaneously, and investigating the
sensitivity of power factor of a load bus with respect to varying power inputs of a
generator bus in a large scale power system. Although GE-Cokriging requires slightly
higher computational cost than Cokriging in some cases, the comparison of the accu-
racy shows that this cost is worthwhile.
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1 Introduction

Gaussian process (GP) is one of the most well studied stochastic processes in probability
and statistics. Given the flexible form of data representation, GP is a powerful tool for
classification and regression, and it is widely used in probabilistic scientific computing,
engineering design, geostatistics, data assimilation, machine learning, etc. In particular,
given a data set comprising input/output pairs of locations and quantity of interest (QoI),
GP regression (GPR, also known as Kriging), can provide a prediction along with a mean
squared error (MSE) estimate of the QoI at any location. Alternatively, from the Bayesian
perspective, GPR identifies a Gaussian random variable at any location with a posterior
mean (corresponding to the prediction) and variance (corresponding to the MSE). Gen-
erally speaking, the larger the given data set size is, the closer the GPR’s posterior mean
is to the ground truth and the smaller the posterior variance is.

In many practical problems, obtaining a large amount of data can be difficult because
of the limitation of resources. There are several approaches to augment the data set in
different manners. For example, the original Cokriging method exploits the correlation
between multiple QoIs in the geostatistical study, e.g., the correlation between temper-
ature and precipitation [1–3], or that between near-surface soil density and the gravity-
gradient [4], to improve the accuracy of prediction. Later, the Cokriging method was
extended to utilizing correlation between the same QoI from models with different fi-
delities [5–8]. This GP-based multi-fidelity method is very useful in scientific computing,
because low-fidelity models, e.g., coarse-grained molecular dynamics [9, 10], Reynolds-
average Navier-Stokes equations [11, 12], numerical simulations on coarse grids, are of-
ten used with high-fidelity models, e.g., molecular dynamics, full Navier-Stokes equa-
tions, numerical simulations on fine grids [13], in optimization, uncertainty quantifica-
tion (UQ), control [14], variable-fidelity quantum mechanical calculations of bandgaps
of solids [15], etc. In these tasks, the multi-fidelity method leverages low-fidelity mod-
els for speedup, while uses a high-fidelity model to establish accuracy and/or conver-
gence guarantees. Moreover, the empirical statistics of simulation results from stochastic
scientific computing models can be used to construct single- or multi-fidelity GP mod-
els [16–18]. In this work, Cokriging refers to the GP-based multi-fidelity approach.

Another important approach to enlarge the data set is to use gradient information of
the QoI. This approach can be categorized as Cokriging because the QoI and its gradients
are variables of different species. The idea of incorporating derivatives or gradients to op-
timize Bayesian prediction was proposed by Morris et al. [19]. The gradient-enhanced Krig-
ing (GE-Kriging) method, also referred to as Gradient-based Kriging in some literature,
has been widely investigated in areas such as computational fluid dynamics, especially
in aerodynamics optimization problems [20–23]. Incorporating gradient information in
different ways, this method consists of direct and indirect approaches. The former uses
the gradient information through an augmented covariance matrix [24], while the lat-
ter approximates the gradient via finite-difference method [23, 25]. The gradient-enhanced
Cokriging (GE-Cokriging) method in [26] refers to a GE-Kriging method that uses a differ-


