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Abstract. Algorithms based on deep neural networks (DNNs) have attracted increas-
ing attention from the scientific computing community. DNN based algorithms are
easy to implement, natural for nonlinear problems, and have shown great potential to
overcome the curse of dimensionality. In this work, we utilize the multi-scale DNN-
based algorithm (MscaleDNN) proposed by Liu, Cai and Xu (2020) to solve multi-scale
elliptic problems with possible nonlinearity, for example, the p-Laplacian problem.
We improve the MscaleDNN algorithm by a smooth and localized activation function.
Several numerical examples of multi-scale elliptic problems with separable or non-
separable scales in low-dimensional and high-dimensional Euclidean spaces are used
to demonstrate the effectiveness and accuracy of the MscaleDNN numerical scheme.
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1 Introduction

In this paper, we will introduce a DNN based algorithm for the following elliptic equation
with multiple scales and possible nonlinearity
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where QCIR?, d>2, is a polygonal (polyhedral) domain (open, bounded and connected),
a(x, Vu(x)) : QxR — R is the flux function, and f:Q — R is the source term.

Deep neural networks (DNNs) has not only achieved great successes in computer
vision, natural language processing and other machine learning tasks [19, 28], but also
captured great attention in the scientific computing community due to its universal ap-
proximating power, especially in high dimensional spaces [46]. It has found applications
in the context of numerical solution of ordinary/partial differential equations, integral-
differential equations and dynamical systems [16,20, 26, 36,41,47].

Recent theoretical studies on DNNs have shed some light on the design of DNN-
based algorithms for scientific computing tasks, in particular, for multi-scale problems.
For example, the frequency principle (F-Principle) [15,37,44,45], shows that, DNNs often
fit target functions from low frequency components to high frequency ones, as opposed
to the behavior of many conventional iterative numerical schemes (e.g., Gauss-Seidel
method), which exhibit faster convergence for higher frequencies. To improve the conver-
gence for high-frequency or multi-scale problems, a series of algorithms are developed to
accelerate the learning of high-frequency components based on F-Principle [5, 6,27, 30].
In particular, a multi-scale DNN algorithm(MscaleDNN) has achieved favourable per-
formance boost for high-frequency problems [30]. The idea of the MscaleDNN to convert
high-frequency contents into low-frequency ones as follows. The Fourier space is parti-
tioned with respect to the radial direction. Since scaling input can shift the frequency
distribution along the radial direction, a scaling down operation is used to scale the
high-frequency components to low-frequency ones. Such radial scaling is independent
of dimensionality, hence MscaleDNN is applicable for high-dimensional problems. Also,
borrowing the multi-resolution concept of wavelet approximation theory using compact
scaling and wavelet functions, an localized activation function (i.e., sSReLU) was designed
in previous work [30], which is a product of two ReLU functions. By setting multiple scal-
ings in a MscaleDNN, numerical results in previous study [30] show that MscaleDNN is
effective for linear elliptic partial differential equations with high frequencies.

We focus our exposition on the numerical method, and therefore restrict the flux func-
tion in (1.1) to the following Leray-Lions form [13] since it admits a natural variational
form. Namely, for (x,&) € QxRY, a(x,&) = K(x)qb’(]g])‘—é, where ¢ € C? is the so-called
N—function (an extension for the convex function with ¢’(0) =0, see [13] for the precise
definition). For p-Laplacian problem, ¢(t) = %t”, and when p =2 then a(x,¢) =«x(x)¢
becomes linear. x(x) € L*(Q)) is symmetric, uniformly elliptic on (), and may contain
(non-separable) multiple scales. More general nonlinear flux will be treated in future
work. With the above setup, the elliptic problem (1.1) is monotone and coercive, there-
fore it admits a unique solution. Those models have applications in many areas such
as heterogeneous (nonlinear) materials [18], non-Newtonian fluids, surgical simulation,
image processing, machine learning [40], etc.

In the last decades, much effort has been made for the numerical solution of the (1.1).
In particular, for p-Laplacian equation with x(x) =1, Some degrees of effectiveness can



