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Abstract. Random batch algorithms are constructed for quantum Monte Carlo simu-
lations. The main objective is to alleviate the computational cost associated with the
calculations of two-body interactions, including the pairwise interactions in the poten-
tial energy, and the two-body terms in the Jastrow factor. In the framework of varia-
tional Monte Carlo methods, the random batch algorithm is constructed based on the
over-damped Langevin dynamics, so that updating the position of each particle in an
N-particle system only requires O(1) operations, thus for each time step the computa-
tional cost for N particles is reduced from O(N2) to O(N). For diffusion Monte Carlo
methods, the random batch algorithm uses an energy decomposition to avoid the com-
putation of the total energy in the branching step. The effectiveness of the random
batch method is demonstrated using a system of liquid 4He atoms interacting with a
graphite surface.
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1 Introduction

One of the fundamental problems in chemistry is the computation of the ground state
energy of a many-body quantum system. Although this major difficulty has been cir-
cumvented to some extent by the density-functional theory [29], the quantum Monte
Carlo (QMC) method [2, 3, 13, 39, 46] still remains an important approach to determine
the ground state energy and electron correlations.
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This paper is concerned with the implementation of the QMC for many-body systems.
More specifically, we consider the Hamiltonian,

Ĥ=
N

∑
i=1

− h̄2

2m
△ri

+∑
i 6=j

W(ri−rj)+
N

∑
i=1

Vext(ri). (1.1)

Here we use r = (r1,r2,··· ,rN) to denote the particle coordinates with N being the total
number of particles. and the Laplacian (−△) in the first term of the Hamiltonian indi-
cates the kinetic energy. The second term in the Hamiltonian, which is a double sum,
embodies the pairwise interactions, e.g., Coulomb, while the last term includes the exter-
nal potential, namely,

Vext(ri)=
M

∑
α=1

U(ri−Rα), (1.2)

where Rα, for instance, can be the position of an atom.

In principle, the ground state can be obtained by computing the smallest eigenvalue
and the corresponding eigenfunction. It can be expressed in terms of a Rayleigh quotient,

E=min
Φ

∫

R3N
ΦĤΦdr1 ···drN

∫

R3N
|Φ|2dr1 ···drN

, (1.3)

and the minimizer Φ corresponds to the ground state wave function. However, due to
the high dimensionality, a direct numerical approach, e.g., using finite difference or finite
element methods together with numerical quadrature for the integrals suffers from the
curse of dimensionality, thus is typically prohibitively expensive.

Within the variational Monte Carlo (VMC) framework, this issue is addressed by se-
lecting an appropriate ansatz, denoted here by Φ≈Ψ0, for the many-body wave func-
tion. Then the multi-dimensional integral is interpreted as a statistical average, which
can be sampled using a Monte Carlo procedure. Traditionally, Ψ0 is constructed using
the one-body wave functions, with the effect of particle correlations described by Jastrow
factors [13]. Recently, artificial neural networks from machine learning have also been
used to represent the many-body wave function [7, 17, 18, 37]. In fact, the recent surge of
interest in applying machine-learning algorithms to scientific computing problems has
been a strong motivation for the current work.

The first part of this paper is concerned with the numerical implementation of VMC.
Since VMC formulates the energy calculation as a sampling problem, the most natural
approach is the Metropolis-Hastings (MH) algorithm which, in general, falls into the
category of Markov chain Monte Carlo (MCMC) algorithms in statistics. At each step,
the chain is updated by calculating the energy change. As can be seen from (1.1) and
(1.3), this requires visiting all particles in the system. A direct treatment would involve
O
(

N(N+M)
)

operations in each time step. The presence of the Jastrow factor further


