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Abstract. We propose a generalized space-time domain decomposition approach for
the physics-informed neural networks (PINNs) to solve nonlinear partial differential
equations (PDEs) on arbitrary complex-geometry domains. The proposed framework,
named eXtended PINNs (XPINNs), further pushes the boundaries of both PINNs as
well as conservative PINNs (cPINNs), which is a recently proposed domain decompo-
sition approach in the PINN framework tailored to conservation laws. Compared to
PINN, the XPINN method has large representation and parallelization capacity due to
the inherent property of deployment of multiple neural networks in the smaller sub-
domains. Unlike cPINN, XPINN can be extended to any type of PDEs. Moreover, the
domain can be decomposed in any arbitrary way (in space and time), which is not
possible in cPINN. Thus, XPINN offers both space and time parallelization, thereby
reducing the training cost more effectively. In each subdomain, a separate neural net-
work is employed with optimally selected hyperparameters, e.g., depth/width of the
network, number and location of residual points, activation function, optimization
method, etc. A deep network can be employed in a subdomain with complex solution,
whereas a shallow neural network can be used in a subdomain with relatively simple
and smooth solutions. We demonstrate the versatility of XPINN by solving both for-
ward and inverse PDE problems, ranging from one-dimensional to three-dimensional
problems, from time-dependent to time-independent problems, and from continuous
to discontinuous problems, which clearly shows that the XPINN method is promis-
ing in many practical problems. The proposed XPINN method is the generalization of
PINN and cPINN methods, both in terms of applicability as well as domain decompo-
sition approach, which efficiently lends itself to parallelized computation. The XPINN
code is available on https://github.com/AmeyaJagtap/XPINNs.
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1 Introduction

Recently deep neural networks (DNNs) have gained a lot of attention in the field of scien-
tific machine learning (SciML). Thanks to their universal approximation properties, they
can be exploited to construct alternative approaches for solving PDEs. In particular, they
offer nonlinear approximation through the composition of hidden layers, which does
not limit the approximation to the linear spaces. The training of a DNN based model
(black-box surrogate model) usually requires a large amount of labeled data, which are
often unavailable in many scientific applications. However, when the governing PDEs
are known, their solutions can be learned in a physics-informed fashion with relatively
small amounts of data. The physics-informed loss functions are constructed based on
PDE residuals and the DNN is trained by minimizing this loss function, which, in turn,
satisfies the governing physical laws. The notion of a neural network to solve PDEs was
proposed in 90’s, see [1–4], and more recently in [5–7], which had rapid success due to
remarkable advances in the GPU hardware but also the stochastic gradient descent al-
gorithms such as Adam [20]. More broadly, Owhadi [33] constructed physics-informed
learning machines that made use of systematically structured prior information about
the solution. Brunton, et al. [34] proposed the SINDy framework for dictionary learn-
ing of dynamical systems. Ling et al. [39] uses DNN to model the Reynolds stresses
in a Reynolds-averaged Navier-Stokes model. Wang et al. [29] proposed the physics-
informed machine learning approach for turbulence modeling. Tompson et al. [40] used
a convolutional neural network to solve a large sparse linear system for Navier-Stokes
equations. In [38], the authors proposed a deep Galerkin method, which is a deep learn-
ing algorithm for solving PDEs. Recently, Raissi et al. [37] used automatic differentiation
and proposed physics-informed neural networks (PINNs), where the PDE residual is
incorporated into the loss function of fully-connected neural networks as a regularizer,
thereby constraining the space of admissible solutions. In this setting, the problem of
inferring solutions of PDEs is transformed into an optimization problem of the loss func-
tion. The major advantage of PINNs is providing a mesh-free algorithm as the differential
operators in the governing PDEs are approximated by automatic differentiation [8]. PINNs
require a modest amount of data, which can be properly enforced in the loss function.
PINNs can solve forward problems, where the solution of governing physical laws is in-
ferred, as well as inverse problems, where unknown coefficients or even differential oper-
ators in the governing equations are identified. The PINNs has been applied extensively
to solve various PDEs such as fractional PDEs [13, 14], stochastic PDEs [11, 12], with lim-
ited training data. Moreover, it has been successfully employed to solve many problems
in computational and engineering science like, geostatistical modeling [36], cardiovas-
cular systems [42–44], vortex-induced vibrations [45], high Mach number compressible


