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Abstract. Physics informed neural networks (PINNs) are deep learning based tech-
niques for solving partial differential equations (PDEs) encountered in computational
science and engineering. Guided by data and physical laws, PINNs find a neural net-
work that approximates the solution to a system of PDEs. Such a neural network is
obtained by minimizing a loss function in which any prior knowledge of PDEs and
data are encoded. Despite its remarkable empirical success in one, two or three di-
mensional problems, there is little theoretical justification for PINNs.
As the number of data grows, PINNs generate a sequence of minimizers which corre-
spond to a sequence of neural networks. We want to answer the question: Does the se-
quence of minimizers converge to the solution to the PDE? We consider two classes of
PDEs: linear second-order elliptic and parabolic. By adapting the Schauder approach
and the maximum principle, we show that the sequence of minimizers strongly con-
verges to the PDE solution in C0. Furthermore, we show that if each minimizer satisfies
the initial/boundary conditions, the convergence mode becomes H1. Computational
examples are provided to illustrate our theoretical findings. To the best of our knowl-
edge, this is the first theoretical work that shows the consistency of PINNs.
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1 Introduction

Machine learning techniques using deep neural networks have been successfully applied
in various fields [24] such as computer vision and natural language processing. A notable
advantage of using neural networks is its efficient implementation using a dedicated

∗Corresponding author. Email addresses: yeonjong shin@brown.edu (Y. Shin), jerome darbon@brown.edu

(J. Darbon), george karniadakis@brown.edu (G. E. Karniadakis)

http://www.global-sci.com/cicp 2042 c©2020 Global-Science Press



Y. Shin, J. Darbon and G. E. Karniadakis / Commun. Comput. Phys., 28 (2020), pp. 2042-2074 2043

hardware (see [8, 22]). Such techniques have also been applied in solving partial differ-
ential equations (PDEs) [4, 10, 22, 23, 32, 35], and it has become a new sub-field under the
name of Scientific Machine Learning (SciML) [2, 26]. The term Physics-Informed Neu-
ral Networks (PINNs) was introduced in [32] and it has become one of the most popular
deep learning methods in SciML. PINNs employ a neural network as a solution surrogate
and seek to find the best neural network guided by data and physical laws expressed as
PDEs.

A series of works have shown the effectiveness of PINNs in one, two or three di-
mensional problems: fractional PDEs [30, 36], stochastic differential equations [18, 39],
biomedical problems [33], and fluid mechanics [27]. Despite such remarkable success in
these and related areas, PINNs lack theoretical justification. In this paper, we provide a
mathematical justification of PINNs.

One of the main goals of PINNs is to approximate the solution to the PDE. For read-
ers’ convenience, we provide a concrete example to explain the PINNs method. Let us
consider a 1D Poisson equation on U=(0,1) with the Dirichlet boundary conditions:

L[u](x)= f (x), ∀x∈U, B[u](x)= g(x), ∀x∈∂U,

where the differential operator L is the Laplace ∆ operator and the boundary operator
B is the identity operator. Suppose that the differential operator L and the boundary
operator B are known to us, however, the PDE data (i.e., f and g) are only known at
some sample points. In other words, although we do not know what f and g are ex-
actly, we can access them through their pointwise evaluations. Here and throughout the
paper, we assume the high regularity setting for PDEs where point-wise evaluations are
defined. We refer to a set of available pointwise values of f and g as the training data
set. The loss functionals are then designed to penalize functions that fail to satisfy both
governing equations (PDEs) and boundary conditions on the training data. For example,
if (j/5, f (j/5)) for j=1,··· ,4, and (0,g(0) and (1,g(1)) are given to us as the training data,
a prototype PINN loss functional [32] is defined by

Loss(u)=
1

4

4

∑
j=1

(∆u(j/4)− f (j/4))2+
1

2

[

(u(0)−g(0))2+(u(1)−g(1))2
]

.

PINNs seek to find a neural network that minimizes the loss in a class of neural net-
works. A minimizer serves as an approximation to the solution to the PDE. Since neural
networks are parameterized with finitely many variables, the loss functional restricted to
it becomes a function of network parameters, which is called the loss function. With a
slight abuse of terminology, we shall not distinguish the loss functional and the loss func-
tion and both will be simply called the loss function. In Fig. 1, we provide a schematic of
PINNs.

PINNs are different approaches to the traditional variational principle that minimizes
an energy functional [1,6,11]. The most distinctive difference between them is that not all
PDEs satisfy a variational principle, however, the formulation of PINNs does not require


