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Abstract. One of the most challenging issues in applied mathematics is to develop
and analyze algorithms which are able to approximately compute solutions of high-
dimensional nonlinear partial differential equations (PDEs). In particular, it is very
hard to develop approximation algorithms which do not suffer under the curse of di-
mensionality in the sense that the number of computational operations needed by the
algorithm to compute an approximation of accuracy ε>0 grows at most polynomially
in both the reciprocal 1/ε of the required accuracy and the dimension d∈N of the PDE.
Recently, a new approximation method, the so-called full history recursive multilevel Pi-
card (MLP) approximation method, has been introduced and, until today, this approxi-
mation scheme is the only approximation method in the scientific literature which has
been proven to overcome the curse of dimensionality in the numerical approximation
of semilinear PDEs with general time horizons. It is a key contribution of this article
to extend the MLP approximation method to systems of semilinear PDEs and to nu-
merically test it on several example PDEs. More specifically, we apply the proposed
MLP approximation method in the case of Allen-Cahn PDEs, Sine-Gordon-type PDEs,
systems of coupled semilinear heat PDEs, and semilinear Black-Scholes PDEs in up to
1000 dimensions. We also compare the performance of the proposed MLP approxima-
tion algorithm with a deep learning based approximation method from the scientific
literature.
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1 Introduction

One of the most challenging issues in applied mathematics is to develop and analyze
algorithms which are able to approximately compute solutions of high-dimensional non-
linear partial differential equations (PDEs). In particular, it is very hard to develop ap-
proximation algorithms which do not suffer under the curse of dimensionality in the
sense that the number of computational operations needed by the algorithm to compute
an approximation of accuracy ε>0 grows at most polynomially in both the reciprocal 1/ε

of the required accuracy and the dimension d∈N of the PDE. In the last four years, very
significant progress has been made in this research area, where particularly the following
two types of approximation methods have turned out to be very promising:

(I) Deep learning based approximation methods for PDEs; cf., e.g., [3–5, 9–12, 15–17,
19, 20, 24, 26, 28, 31, 36–40, 46, 48, 49, 52–63, 65, 66]

(II) Full history recursive multilevel Picard approximation methods for PDEs; cf., e.g.,
[6,7,22,23,29,41,43–45] (in the following we abbreviate full history recursive multilevel
Picard by MLP)

Roughly speaking, deep learning based approximation methods for high-dimensional
PDEs are often based on the idea

(Ia) to approximate the solution of the considered PDE through the solution of a suitable
infinite dimensional stochastic optimization problem on an appropriate function
space,

(Ib) to approximate some of the functions appearing in the infinite dimensional stochas-
tic optimization problem by deep neural networks (DNNs) to obtain finite dimen-
sional stochastic optimization problems, and

(Ic) to apply stochastic gradient descent type algorithms to the resulting finite dimen-
sional stochastic optimization problems to approximately learn the optimal param-
eters of the involved DNNs.

MLP approximation methods have first been proposed in [22,43] and are, roughly speak-
ing, based on the idea

(IIa) to reformulate the computational problem under consideration as a stochastic fixed
point equation on a suitable function space with the fixed point of the fixed point
equation being the solution of the computational problem,


