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Abstract. In this paper, we present a conservative semi-Lagrangian finite-difference
scheme for the BGK model. Classical semi-Lagrangian finite difference schemes, cou-
pled with an L-stable treatment of the collision term, allow large time steps, for all the
range of Knudsen number [17, 27, 30]. Unfortunately, however, such schemes are not
conservative. Lack of conservation is analyzed in detail, and two main sources are
identified as its cause. First, when using classical continuous Maxwellian, conserva-
tion error is negligible only if velocity space is resolved with sufficiently large number
of grid points. However, for a small number of grid points in velocity space such error
is not negligible, because the parameters of the Maxwellian do not coincide with the
discrete moments. Secondly, the non-linear reconstruction used to prevent oscillations
destroys the translation invariance which is at the basis of the conservation properties
of the scheme. As a consequence the schemes show a wrong shock speed in the limit
of small Knudsen number. To treat the first problem and ensure machine precision
conservation of mass, momentum and energy with a relatively small number of veloc-
ity grid points, we replace the continuous Maxwellian with the discrete Maxwellian
introduced in [22]. The second problem is treated by implementing a conservative cor-
rection procedure based on the flux difference form as in [26]. In this way we can con-
struct conservative semi-Lagrangian schemes which are Asymptotic Preserving (AP)
for the underlying Euler limit, as the Knudsen number vanishes. The effectiveness of
the proposed scheme is demonstrated by extensive numerical tests.
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1 Introduction

The dynamics of a non-ionized dilute gas at mesoscopic level is described by the cele-
brated Boltzmann equation [9]. The development of efficient numerical methods for its
solution, however, constitutes a formidable challenge, due, among others, to the high di-
mensionality of the problem, the complicated structure of the collision operator, the need
to preserve the collision invariants at a discrete level, and the stiffness issue arising when
the Knudsen number is very small.

In view of this situation, Bhatnagar, Gross and Krook, in 1954, suggested a relaxation
model of the Boltzmann equation, which now goes by the name of the BGK model [5].
This approximation preserves several important qualitative features of the original Boltz-
mann equation, such as conservation of mass, momentum and energy, H-theorem and
relaxation to equilibrium, and is now widely used as a simplified alternative to the Boltz-
mann equation because it is much less expensive to treat at a numerical level.

Initial value problem for the BGK model on a periodic domain reads

∂ f

∂t
+v·∇x f =

1

κτ0
(M( f )− f ) ,

f (x,v,0)= f0(x,v).

(1.1)

The velocity distribution function f (x,v,t) represents the mass density of particles at
point (x,v) ∈ Rd×Rd in phase space, at time t > 0. The quantity τ = κτ0 represent the
relaxation time. Here κ is the Knudsen number, defined as a ratio between the mean
free path and a macroscopic characteristic length of the physical system. We assume it
may change by several orders of magnitude, and in particular it may become extremely
small. The time τ0 expresses the dependence of the relaxation time on the deviation of
temperature and density from the reference one. We assume such dependence is not very
strong, and for simplicity we consider τ0 to be constant in our treatment and analysis. By
suitable non-dimensionalization of the problem we shall omit to write the term τ0. The
local Maxwellian M( f ) is given by

M( f )(x,v,t) :=
ρ(x,t)√

(2πT(x,t))d
exp

(
−|v−U(x,t)|2

2T

)
,

where the macroscopic fields of local density ρ(x,t)∈R+, bulk velocity U(x,t)∈Rd and
local temperature T(x,t)∈R+ are defined through the following relation:

(ρ(x,t),ρ(x,t)U(x,t),E(x,t))T = 〈 f φ(v)〉, (1.2)

where

φ(v)=

(
1,v,

1

2
|v|2
)T

, and 〈g〉≡
∫

Rd
g(v)dv.


