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Abstract. In this paper, we propose and test a novel diagonal sweeping domain
decomposition method (DDM) with source transfer for solving the high-frequency
Helmholtz equation in R

n. In the method the computational domain is partitioned into
overlapping checkerboard subdomains for source transfer with the perfectly matched
layer (PML) technique, then a set of diagonal sweeps over the subdomains are specially
designed to solve the system efficiently. The method improves the additive overlap-
ping DDM [43] and the L-sweeps method [50] by employing a more efficient subdo-
main solving order. We show that the method achieves the exact solution of the global
PML problem with 2n sweeps in the constant medium case. Although the sweeping
usually implies sequential subdomain solves, the number of sequential steps required
for each sweep in the method is only proportional to the n-th root of the number of
subdomains when the domain decomposition is quasi-uniform with respect to all di-
rections, thus it is very suitable for parallel computing of the Helmholtz problem with
multiple right-hand sides through the pipeline processing. Extensive numerical ex-
periments in two and three dimensions are presented to demonstrate the effectiveness
and efficiency of the proposed method.
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1 Introduction

In this paper, we consider the well-known Helmholtz equation defined in R
n (n=2,3) as

follows:

∆u+κ2u= f , in R
n, (1.1)
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imposed with the Sommerfeld radiation condition

r
n−1

2

(∂u

∂r
−iκu

)
→0, as r= |x|→∞, (1.2)

where u(x) is the unknown function, f (x) is the source and κ(x) :=ω/c(x) denotes the
wave number with ω being the angular frequency and c(x) the wave speed. Solving
the Helmholtz equation (1.1) with large wave number accurately and efficiently is cru-
cial to many physics and engineering problems. For example, in exploration seismology,
the Helmholtz equation with pre-given wave speed needs to be solved for hundreds of
different sources in reverse time migration, and even more in full wave inversion. How-
ever, since the discrete Helmholtz system with large wave number is highly indefinite,
constructing efficient solvers is quite important and challenging [27], and for this pur-
pose many methods have been proposed and studied, including the direct method [19],
the multigrid method [26] and the domain decomposition method [16].

The direct method, such as the multifrontal method [19] with nested dissection [37],
was designed to solve linear systems arising from discretization of general PDE prob-
lems, and has been employed to solve the discrete Helmholtz problem. The multifrontal
method was further coupled with the hierarchically semi-separable matrices (HSS) in
[39], and the low rank proprieties were exploited to reduce the computational complex-
ity for many problems including Helmholtz equation in [55, 56]. However, the low-rank
representation for the Helmholtz kernel in high frequency is missing [22], which causes
the HSS and multifrontal coupled method to be less effective for high frequency prob-
lems. On the other hand, some variants of the multifrontal method were also introduced
in [38, 44] for the Helmholtz problem. Those methods mostly focus on constructing the
Dirichlet to Neumann (DtN) map for the subdomains in the nested dissection, which
is more intuitive than manipulating the algebraic matrices in the multifrontal method,
while the order of computational complexity remains the same.

The multigrid method with the shifted Laplace was first introduced in [26], and then
further developed in [3, 23–25, 48, 53]. A complex shift is added to the Helmholtz op-
erator, resulting in an easier problem that could be solved with multigrid solver, which
then can be used as an effective preconditioner for the original Helmholtz problem. The
shifted Laplace method has been shown to be very effective, and followed by many re-
searches in literature, to name a few, [1, 7, 9, 14, 15, 34, 40, 46, 52]. The amount of the shift
is a compromise, a larger shift leads to an easier problem to solve in preconditioning but
more iteration steps in the Krylov subspace solve, while a smaller shift results in harder
preconditioning but fewer iteration steps. For the high frequency problem, if the shifted
problem in preconditioning is required to be solved efficiently, then the number of itera-
tions in the Krylov subspace solve grows as fast as the square of the frequency [35], thus
the high frequency problem still remains a big challenge for the shifted Laplace method.
The two-level domain decomposition preconditioner [8] is effective for some complicated
applications such as elastic crack problems, but applying such method to the Helmholtz
problem is quite difficult since it is very hard to construct a proper coarse space that


