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Abstract. Phase field models, in particular, the Allen-Cahn type and Cahn-Hilliard
type equations, have been widely used to investigate interfacial dynamic problems.
Designing accurate, efficient, and stable numerical algorithms for solving the phase
field models has been an active field for decades. In this paper, we focus on using
the deep neural network to design an automatic numerical solver for the Allen-Cahn
and Cahn-Hilliard equations by proposing an improved physics informed neural net-
work (PINN). Though the PINN has been embraced to investigate many differential
equation problems, we find a direct application of the PINN in solving phase-field
equations won’t provide accurate solutions in many cases. Thus, we propose various
techniques that add to the approximation power of the PINN. As a major contribu-
tion of this paper, we propose to embrace the adaptive idea in both space and time
and introduce various sampling strategies, such that we are able to improve the effi-
ciency and accuracy of the PINN on solving phase field equations. In addition, the
improved PINN has no restriction on the explicit form of the PDEs, making it applica-
ble to a wider class of PDE problems, and shedding light on numerical approximations
of other PDEs in general.
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1 Introduction

Phase field models have been widely embraced in the past few decades to study various
problems, taking the applications in image analysis, material science, engineering, fluid
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mechanics, and life science as examples. Among them, two fundamental equations are
the Allen-Cahn (AC) equation and Cahn-Hilliard (CH) equation, which are originally in-
troduced to describe the non-conservative and conservative phase variables in the phase
separation process, respectively. Both models are recognized as gradient flow systems,
for which there exists a Lyapunov function, known as the free energy. From a model-
ing view, given a specified Lyapunov function, or a free energy function, the Allen-Cahn
type equations can be derived as the L2 gradient flow, and the Cahn-Hilliard type equa-
tions can be derived as the H−1 gradient flow, respectively. This generality makes the
AC and CH type equations extremely useful in modeling many interfacial or multiphase
problems. Many well-known PDE models turn out to be their special cases.

Given the nonlinearity in phase field equations, along with the stiff terms due to the
small parameters, how to design accurate, efficient, and stable numerical algorithms for
their numerical approximations have been intensively studied in the literature. Here is
some literature that attracts our attention [7, 8, 11, 12, 18, 28, 29, 32, 33]. Interested readers
are encouraged to read them and the references therein for further information. In this
paper, we focus on a new numerical approximation approach by using the deep neural
network. Our major goal is to investigate strategies to improve the capabilities of deep
neural networks on solving phase field models, in particular, the Allen-Cahn equation
and the Cahn-Hilliard equation.

The artificial neural network is named after the fundamental unit of computation in-
side the mammalian brain [20]. Many neurons inside the brain work together to carry out
complex tasks. Similarly, an artificial neural network is composed of multiple connected
neurons that work to solve complex tasks. A single neuron in a neural network can take
input from multiple neurons (or nodes). Each input has a parameter called a weight
associated with it. There is also typically a bias term that doesn’t have an input associ-
ated with it. The neuron receives the sum of these inputs multiplied by their weights,
along with added bias. This weighted sum then goes through an activation function that
gives the final output for this neuron. In the brain, a neuron usually doesn’t fire unless
the total of its input reaches a certain threshold. The output is either on or off. In deep
learning, continuous activation functions are more commonly used [21]. The sigmoid
function can be used as a smoother version of the step function. There are benefits in
using differentiable functions like this that will help in ”learning” good weights. Other
useful activation functions used in deep learning include relu, tanh, leaky relu [31] and
swish [25]. A typical feed-forward, fully connected neural network has input going to
and from multiple neurons. The input to the network makes up the input layer. The neu-
rons of the input layer are then sent to other layers of neuron connections called hidden
layers, and finally to the last layer, the output layer. See Fig. 1 for a representation of a
simple neural network architecture.

Mathematically, the feed-forward neural network could be defined as compositions
of nonlinear functions. Give an input x∈R

n1 , and denote the output of the l-th layer as
a[l]∈R

nl , which is the input for l+1-th layer. In general, we can define the neural network


