
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2020-0046

Vol. 29, No. 5, pp. 1299-1335
May 2021

Arbitrarily High-Order (Weighted) Essentially

Non-Oscillatory Finite Difference Schemes for

Anelastic Flows on Staggered Meshes

Siddhartha Mishra1, Carlos Parés-Pulido1,∗ and Kyle G. Pressel2

1 Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, Zürich,
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Abstract. We propose a WENO finite difference scheme to approximate anelastic flows,
and scalars advected by them, on staggered grids. In contrast to existing WENO
schemes on staggered grids, the proposed scheme is designed to be arbitrarily high-
order accurate as it judiciously combines ENO interpolations of velocities with WENO
reconstructions of spatial derivatives. A set of numerical experiments are presented
to demonstrate the increase in accuracy and robustness with the proposed scheme,
when compared to existing WENO schemes and state-of-the-art central finite differ-
ence schemes.
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1 Introduction

In numerical modeling of fluid systems that are characterized by a low Mach number, it is
often advantageous to introduce approximations to the fully compressible equations that
eliminate acoustic waves. Doing so allows the explicit time integration of the governing
equations to take much longer time steps in comparison to a similar integration of the
compressible equations. This is because numerical stability in the soundproofed system
does not depend on the phase velocity of acoustic waves. Various approximations to the
compressible equations that eliminate acoustic waves have been developed including the

∗Corresponding author. Email addresses: siddhartha.mishra@sam.math.ethz.ch (S. Mishra),
carlos.pares-pulido@sam.math.ethz.ch (C. Parés-Pulido), kyle.pressel@pnnl.gov (K. G. Pressel)

http://www.global-sci.com/cicp 1299 c©2021 Global-Science Press



1300 S. Mishra, C. Parés-Pulido and K. G. Pressel / Commun. Comput. Phys., 29 (2021), pp. 1299-1335

incompressible, Boussinesq, and pseudo-incompressible approximations. The choice of
which approximation is used is determined by the properties of the system being studied.

In atmospheric science, the anelastic system of equations is widely used as the basis
for limited area models, because many atmospheric flows are buoyancy driven, and the
stratification of the atmosphere makes it natural to assume that vertical gradients of den-
sity are much larger than horizontal gradients. In the anelastic system, the momentum,
entropy, and continuity equations are given by
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respectively. Here U = (u1,u2,u3) ∈ R
3 is the fluid velocity, ρ0 is a horizontally homo-

geneous reference state density, p′ = p−p0 is the dynamic pressure, b is the buoyancy,
e3 = (0,0,1), and s is the specific entropy defined as in [15]. Following [12], we define
ρ0 to be consistent with an isentropic and hydrostatic state and where the buoyancy
b = g(ρ/ρ0−1) couples the momentum to thermodynamics, and ρ is determined from
the equation of state. For most of this paper, we focus on Eqs. (1.1) and (1.3), as with this
choice, Eq. (1.2) is only coupled to the other two only through b = b(ρ(s)), and can be
treated as a source term.

Given their importance in applications, a large variety of numerical methods for ap-
proximating anelastic (incompressible) flows are available. In applications where com-
plex domain geometries are rarely encountered, finite difference schemes are a popu-
lar discretization framework as they can account for more general boundary conditions
than spectral methods [3]. Alternative numerical frameworks, such as the finite element
method, discontinuous Galerkin methods, etc. are possible approaches for these prob-
lems, particularly on domains with complex geometries. However, on account of their
computational efficiency and simplicity of implementation, finite difference methods re-
main a very attractive option for many applications, particularly in climate and weather
modelling.

The most straightforward finite difference discretizations of (1.1) and (1.3) are on collo-
cated meshes, where one evolves point values of the velocity and pressure at cell centers.
However, it is well known that this procedure can lead to what is termed as velocity-
pressure decoupling, [11] and references therein. Consequently, nonphysical checkerboard
modes are obtained as solutions to the (discrete) elliptic equation that one has to solve in
order to compute the pressure from the continuity equation (1.3).

A possible remedy for these nonphysical numerical artifacts is the use of staggered
meshes. In this framework, each velocity component is discretized on the center of the un-
derlying normal cell edge. The pressure (and any passively or actively advected scalars)
is discretized at cell centers. The spatial derivatives in (1.1) can then be discretized by


