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Abstract. We propose an idea to solve the Gross–Pitaevskii equation for dark struc-
tures inside an infinite constant background density ρ∞= |ψ∞|2, without the introduc-
tion of artificial boundary conditions. We map the unbounded physical domain R3

into the bounded domain (−1,1)3 and discretize the rescaled equation by equispaced
4th-order finite differences. This results in a free boundary approach, which can be
solved in time by the Strang splitting method. The linear part is solved by a new, fast
approximation of the action of the matrix exponential at machine precision accuracy,
while the nonlinear part can be solved exactly. Numerical results confirm existing
ones based on the Fourier pseudospectral method and point out some weaknesses of
the latter such as the need of a quite large computational domain, and thus a conse-
quent critical computational effort, in order to provide reliable time evolution of the
vortical structures, of their reconnections, and of integral quantities like mass, energy,
and momentum. The free boundary approach reproduces them correctly, also in finite
subdomains, at low computational cost. We show the versatility of this method by
carrying out one- and three-dimensional simulations and by using it also in the case of
Bose–Einstein condensates, for which ψ→0 as the spatial variables tend to infinity.
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1 Introduction

The nonlinear (cubic) Schrödinger equation with external potential

i
∂ψ

∂t
(x,t)+a∇2ψ(x,t)−V(x)ψ(x,t)+s|ψ(x,t)|2ψ(x,t), x∈R

3, (1.1)
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where ψ is the complex wavefunction, a>0 and s∈R, is commonly used as a model for the
dynamics of Bose–Einstein condensates (BECs, see [3] for a review of the mathematical
theory and numerical methods) and of superfluids (see [6,21] for the derivation of such an
equation). In both cases, it is also known as Gross–Pitaevskii equation (GPE). From the
mathematical point of view, one of the main differences between BECs and superfluid
simulations is in the boundary conditions satisfied by the wavefunction ψ. In the first
case they are vanishing, that is ψ → 0 as |x| → ∞, whereas for superfluids the interest
is in the dynamics of dark structures, such as solitons, vortex lines, and vortex rings,
which are objects with a core of (near) zero density ρ = |ψ|2 inside an infinite constant
background density ρ∞. In order to impose the boundary conditions in the former case,
the unbounded domain R3 is usually truncated and homogeneous Dirichlet or periodic
boundary conditions are set. Hence, sine or Fourier pseudospectral discretizations in
space can be used. In the latter case, common simple techniques are quite artificial and
consist in homogeneous Neumann boundary conditions (see [13]) or periodic boundary
conditions, after a proper mirroring of the truncated computational domain (see [13, 17,
23]). Even though the domain has to be doubled in the directions lacking periodicity,
the pseudospectral Fourier discretization in space is commonly used because it fits well
with the time splitting Fourier pseudospectral (TSFP) method which, in the context of
BECs, is the method of choice, due to its simplicity, efficiency (thanks to the Fast Fourier
Transform), spectral accuracy in space, and the properties of unconditional stability, time
reversibility, gauge invariance, and mass preservation (see [3, § 4.1]). Quite recently, it
was proposed in [15] a new simple method, called Modulus Square Dirichlet (MSD), for
the treatment of boundary conditions in the form

ρ|b =
∣

∣ψ|b
∣

∣

2
=B, B>0, (1.2)

where ψ|b denotes the restriction of ψ at the boundaries of a bounded domain and B is the
value of the modulus square which must be constant both in space and time at the bound-
aries. For this reason, MSD boundary conditions cannot be used for straight vortices as
their density ρ= |ψ|2 is not constant at boundaries that intersect their cores. Overall, the
method introduced in [15] is a Runge–Kutta finite difference scheme of order four both
in space and time. Other approaches to the solution of the Gross–Pitaevskii equation
with non-vanishing boundary conditions are based on the far field asymptotic behav-
ior (see [4]), or on the imposition of inhomogeneous Dirichlet boundary conditions in a
truncated domain (see [26,27]). In this paper we propose another simple way to treat this
type of boundary conditions. We are concerned with superfluid simulations, for which
the GPE takes the form

ψt=
i

2
∇2ψ+

i

2

(

1−|ψ|2
)

ψ. (1.3)

It is usually understood to have ρ= |ψ|2=1 at infinity (see [6]), although straight vortices
are an exception. First of all, we explicitly compute in Section 2 mass, energy and mo-
mentum variations over a bounded domain Ω, taking into account the peculiarity of the
boundary conditions. In Section 3 we perform a change of variable η(y,t)=ψ(x,t), so as


