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Abstract. In this paper, we propose an efficient mortar spectral element approxima-
tion scheme for full-potential electronic structure calculations. As a subsequent work
of [24], the paper adopts a similar domain decomposition that the computational do-
main is first decomposed into a number of cuboid subdomains satisfying each nucleus
is located in the center of one cube, in which a small ball element centered at the site
of the nucleus is attached, and the remainder of the cube is further partitioned into six
curvilinear hexahedrons. Specially designed Sobolev-orthogonal basis is adopted in
each ball. Classic conforming spectral element approximations using mapped Jacobi
polynomials are implemented on the curvilinear hexahedrons and the cuboid elements
without nuclei. A mortar technique is applied to patch the different discretizations.
Numerical experiments are carried out to demonstrate the efficiency of our scheme,
especially the spectral convergence rates of the ground state approximations. Essen-
tially the algorithm can be extended to general eigenvalue problems with the Coulomb
singularities.
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1 Introduction

The Schrödinger wave equation is the quantum mechanical law determining the behav-
ior of matter. Numerical solution of the Schrödinger equation is challenging since many-
body problems would lead to high computational cost, especially for large scale sys-
tems. Several highly successful approximations have been made for efficient implemen-
tations [25, 33], among which Kohn-Sham density functional theory (DFT) achieves so
far the best compromise between accuracy and efficiency when dealing with condensed
matter systems [18, 22]. Therefore the Kohn-Sham equations play an essential role in the
study of electronic structures of materials.

In this paper, we consider the following Kohn-Sham equations for a system contain-
ing Nn nuclei and Ne electrons,





(
− 1

2
∆+Vne+VH(ρu)+Vxc(ρu)

)
ui=λiui, i=1,2,··· ,Ne/2, in R3,

∫

R3
uiuj=δi,j, i, j=1,2,··· ,Ne/2,

(1.1)

where the k-th nucleus is located at Rk∈R3 and has charge Zk∈N+. δi,j is the Kronecker
delta. We assume in this paper that Ne is even for considering a system without the
spin polarization effects and consider Ne/2 eigenpairs. In (1.1), ρu is the electron density
defined by

ρu(x)=2
Ne/2

∑
i=1

|ui(x)|2, u=(u1,u2,··· ,uNe/2). (1.2)

Vne is the singular Coulomb interaction between electrons and nuclei,

Vne(x)=−
Nn

∑
k=1

Zk

|x−Rk|
.

VH(ρu) is the Hartree potential given by

VH(ρu)=
∫

R3

ρu(y)

|x−y|dy. (1.3)

Vxc(ρu) is the exchange-correlation potential [22]. (1.1) is a nonlinear eigenvalue problem
since the potentials VH and Vxc depend on the eigenfunctions. Physically, the problem
is considered in R3. In practice, owing to the exponential decay of the eigenfunctions of
(1.1) on the whole space [1, 17], it is feasible to restrict the computations to a properly
bounded domain Ω⊂R3 by imposing appropriate boundary conditions.

Developments in various numerical algorithms and large-scale computations have
made great contributions to the popularity of Kohn-Sham density functional theory. The
singular Coulomb potential in the Kohn-Sham equations introduces a cusp in the eigen-
functions at each atomic position. The cusps hinder classic numerical methods with


