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Abstract. The computational approach for solving the Faddeev-Merkuriev equations
in total orbital momentum representation is presented. These equations describe a sys-
tem of three quantum charged particles and are widely used in bound state and scatter-
ing calculations. The approach is based on the spline collocation method and exploits
intensively the tensor product form of discretized operators and preconditioner, which
leads to a drastic economy in both computer resources and time.
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1 Introduction

Since the pioneering work of Hylleraas [1], quantum three-body systems remain the
source of challenges and inspirations for theoretical and experimental physicists. New
effects specific to three-body systems have been predicted, such as Thomas effect [2],
Efimov effect [3], the Phillips line [4, 5]. Direct modeling of nuclear and molecular three-
body systems paved a way to develop and to fine-tune realistic models of inter-atomic
and inter-nucleon interactions [6–9]. Ab-initio calculations of some specific three-atomic
systems may give essential contributions to metrology [10]. The Coulomb quantum
three-body systems are also of great importance. For instance, delicate calculations of
asymmetric heavy-hydrogen molecular ions gave an insight on mu-catalysis [11], studies
of positron-atom interactions are valuable for positron-emission tomography.
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Even though the basic mathematical model for such a broad spectrum of physical
systems is the Schrödinger equation, the diversity of model interactions and particular
physical states leads to a variety of employed computational methods [12–25]. Thus,
our ability to perform direct model-free calculations for such wide range of systems is of
utmost importance for many branches of physics.

Our goal is to present a universal and efficient computational framework applicable
to this broad variety of physical systems and states. In order to achieve this goal we
start from the following presuppositions. The approach should be based on a physically
correct and mathematically sound representation of the problem. The Faddeev equa-
tions formalism [26–28] fulfills all of these requirements. Clear separation of asymptotic
channels corresponding to different clusterisations of the system is one of the main ad-
vantageous features of the formalism from the point of view of practical applications.
Coulomb systems are incorporated into the original formalism by the Merkuriev’s ver-
sion of the Faddeev equations in [29, 30], where the splitting of the Coulomb potentials
into long-rage and short-range parts was introduced. Being mathematically equivalent
to the Schrödinger equation [29, 30], the Faddeev-Merkuriev (FM) equations have ad-
vantages of much simpler boundary conditions and much simpler behavior of their solu-
tions. This leads to much weaker requirements for the basis employed in the calculations.

Direct solution of the FM equations is not, however, a simple task. In order to reduce
the dimensionality of the configuration space the symmetries of the solutions must be
taken into account. We base our computational approach on total orbital momentum rep-
resentation which leads to systems of partial differential equations in three-dimensional
space. Solving such systems numerically is still a challenging task which calls for devel-
oping an effective and robust preconditioning technique. Here we propose a precondi-
tioning scheme based on the tensor-trick algorithm and compare our numerical scheme
with solving the corresponding sparse linear system using PARDISO direct solver. Our
approach clearly outperforms the direct method both in time and memory requirements,
which paves a way to accurate calculations of rather challenging systems, including
highly rotationally excited three-body states.

In the following sections we give a description of the FM equations formalism, de-
scribe our numerical scheme, and give a few computational examples for some well-
studied systems of diverse physical nature.

Throughout the paper we assume h̄ = 1 and we use bold font for vectors as, for in-
stance, x and normal font for their magnitude x= |x|.

2 The Faddeev-Merkuriev equations

2.1 Notation and basic equations

The FM equations for three quantum particles are of the form


