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Abstract. We present a high-order discontinuous Galerkin (DG) scheme to solve the
system of helically symmetric Navier-Stokes equations which are discussed in [28].
In particular, we discretize the helically reduced Navier-Stokes equations emerging
from a reduction of the independent variables such that the remaining variables are:
t, r, ξ with ξ = az+bϕ, where r, ϕ, z are common cylindrical coordinates and t the
time. Beside this, all three velocity components are kept non-zero. A new non-singular
coordinate η is introduced which ensures that a mapping of helical solutions into the
three-dimensional space is well defined. Using that, periodicity conditions for the
helical frame as well as uniqueness conditions at the centerline axis r=0 are derived. In
the sector near the axis of the computational domain a change of the polynomial basis
is implemented such that all physical quantities are uniquely defined at the centerline.

For the temporal integration, we present a semi-explicit scheme of third order
where the full spatial operator is splitted into a Stokes operator which is discretized
implicitly and an operator for the nonlinear terms which is treated explicitly. Com-
putations are conducted for a cylindrical shell, excluding the centerline axis, and for
the full cylindrical domain, where the centerline is included. In all cases we obtain the
convergence rates of order O(hk+1) that are expected from DG theory.

In addition to the first DG discretization of the system of helically invariant Navier-
Stokes equations, the treatment of the central axis, the resulting reduction of the DG
space, and the simultaneous use of a semi-explicit time stepper are of particular nov-
elty.
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1 Introduction

Helical flow structures appear in various natural phenomena and technological devices,
for example, in the wake of windmills [39], as wing tip vortices [32], in astrophysical plas-
mas (see e.g. [4]) and in laboratory applications, including “straight tokamak” plasma
flow approximations, (see e.g. [27, 35]) and other experiments. In particular, helical vor-
tex structures were observed by [34] in experiments with swirling flows in a cylindrical
tube, and as such, they are part of the various flow structures observed in the known
vortex breakdown.

Various groups have worked on the theoretical description of helical flows in recent
decades. The simplest approach here is to introduce a helical coordinate ξ = az+bϕ,
a, b = const. 6= 0 and to assume that all physical quantities depend on the cylinder ra-
dius r and the helical coordinate ξ. Helically invariant flows include translationally and
axially invariant ones as special cases. For both steady Euler equations describing in-
compressible fluid flows and for plasma equilibrium equations in the magnetohydro-
dynamics (MHD) framework, the helical invariance requirement allows to reduce the
governing equations to a single partial differential equation (PDE) known as the JFKO
equation [27]. This important equation generalizes the famous Bragg-Hawthorne-Grad-
Rubin-Shafranov equation [7, 23, 36] describing steady axisymmetric inviscid flows onto
the helically invariant case. Families of exact solutions of JFKO equations are known,
including those derived by [6] (see also [5, 10]). In the more general context of heli-
cal geometry, several works focused on twisted pipes following a given spatial curve
(see [19, 20, 38, 41]). Using non-orthogonal and local-orthogonal coordinate systems, the
effects of pipe curvature and torsion on the flow were investigated. Special analytical
solutions of steady flows in helically symmetric pipes were found by [43]. In [12] a
DNS code for the helical invariant Navier-Stokes equations in a generalized vorticity-
streamfunction formulation has been developed. In [16] the three-dimensional Euler
equations are reduced to a linear equation, assuming that the flow has helical symmetry
and consists of a rigidly rotating basic part and a Beltrami disturbance part. Further, the
authors derived exact solutions for flows in a straight pipe of circular cross section. Exact
solutions for helical flows of a Maxwell fluid constrained between two infinite coaxial
circular cylinders were derived by [26]. The present introduction as well as additional
results on helical flows can be found in [14].

The full three dimensional system of incompressible constant-density Euler- and
Navier-Stokes equations under the assumption of helical symmetry have been derived
and analyzed in [28]. In particular, various new conservation laws admitted by the model
have been found in primitive variables and using the vorticity formulation. A general he-
lically symmetric setting was used, where all three velocity components and the pressure
are generally nonzero, and may depend on the time t, the cylindrical radius r, and the
helical variable

ξ= az+bϕ. (1.1)


