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Abstract. A Finite-Volume based POD-Galerkin reduced order model is developed for
fluid dynamics problems where the (time-dependent) boundary conditions are con-
trolled using two different boundary control strategies: the lifting function method,
whose aim is to obtain homogeneous basis functions for the reduced basis space and
the penalty method where the boundary conditions are enforced in the reduced order
model using a penalty factor. The penalty method is improved by using an iterative
solver for the determination of the penalty factor rather than tuning the factor with a
sensitivity analysis or numerical experimentation.

The boundary control methods are compared and tested for two cases: the classi-
cal lid driven cavity benchmark problem and a Y-junction flow case with two inlet
channels and one outlet channel. The results show that the boundaries of the reduced
order model can be controlled with the boundary control methods and the same order
of accuracy is achieved for the velocity and pressure fields. Finally, the reduced order
models are 270-308 times faster than the full order models for the lid driven cavity test
case and 13-24 times for the Y-junction test case.
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1 Introduction

Complex fluid dynamics problems are generally solved using discretization methods
such as Finite Difference, Finite Element, Finite Volume (FV) or spectral element methods.
However, it is usually not feasible to use these methods for applications that require to
be solved almost in real time, such as on-the-spot decision making, (design) optimization
or control [1]. The high fidelity Computational Fluid Dynamics (CFD) tools, used for nu-
merical simulations of the Navier–Stokes equations, are too computationally expensive
for those purposes. This has motivated the development of reduced order modeling tech-
niques. However, low degree-of-freedom models that are solely based on input-output
data do not represent the physics of the underlying systems adequately and, moreover,
may be sensitive to operating conditions [2].

Therefore, techniques, such as Reduced Basis (RB) methods, have been developed
that retain the essential physics and dynamics of a high fidelity model that consists of
discretized Partial Differential Equations (PDEs) describing the fluid problem [3, 4]. The
basic principle of these reduced order methods is to project the (parametrized) PDEs onto
a low dimensional space, called the reduced basis space, in order to construct a physics-
based model that is reduced in size and, therefore, in computational cost [5–7].

Fluid flows can be controlled in several ways. As an example, the system configu-
ration can be manipulated by modifying the physical properties. However, in this work
the focus is on controlling boundary conditions (BC) that are essential for defining flow
problems.

An example of a boundary control application from the nuclear field is the cou-
pling of thermal-hydraulic system codes, i.e. transient simulations that are based on
one-dimensional models of physical transport phenomena, with three-dimensional CFD
codes [8, 9]. These type of system codes are, in general, based upon the solution of six
balance equations for liquid and steam that are coupled with conduction heat transfer
equations and that are supplemented by a suitable set of constitutive equations [10].

One of the main purposes of this coupling is to speedup the CFD calculations by only
including the region of interest in the CFD model and the rest of the domain in the much
faster system code. However, the gain in computational time of such a coupled model is
still limited by the CFD part. To overcome this burden, the system codes can be coupled
with reduced order models (ROM) of the high fidelity CFD codes. For transient problems,
time-dependent boundary conditions of the ROM are then to be controlled based on the
BCs obtained from the systems codes.

For industrial applications, the Finite Volume discretization method is widely used
by commercial software and open-source codes, as the method is robust [11] and satisfies
locally the conservation laws [12, 13].

By using a RB technique, the non-homogeneous BCs are, in general, no longer sat-
isfied at the reduced order level. Furthermore, the BCs are not explicitly present in the
ROM and therefore they cannot be controlled directly [14]. In literature [14–17], differ-
ent approaches to control the ROM BCs can be found of which two common approaches


