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Abstract. It is reasonable to assume that a discrete convolution structure dominates
the local truncation error of any numerical Caputo formula because the fractional time
derivative and its discrete approximation have the same convolutional form. We sug-
gest an error convolution structure (ECS) analysis for a class of interpolation-type ap-
proximations to the Caputo fractional derivative. Our assumptions permit the use of
adaptive time steps, such as is appropriate for accurately resolving the initial singu-
larity of the solution and also certain complex behavior away from the initial time.
The ECS analysis of numerical approximations has two advantages: (i) to localize (and
simplify) the analysis of the approximation error of a discrete convolution formula on
general nonuniform time grids; and (ii) to reveal the error distribution information in
the long-time integration via the global consistency error. The core result in this pa-
per is an ECS bound and a global consistency analysis of the nonuniform Alikhanov
approximation, which is constructed at an offset point by using linear and quadratic
polynomial interpolation. Using this result, we derive a sharp L2-norm error estimate
of a second-order Crank-Nicolson-like scheme for linear reaction-subdiffusion prob-
lems. An example is presented to show the sharpness of our analysis.
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1 Introduction

The time-fractional diffusion equation provides a valuable tool for modeling complex
systems such as glassy and disordered media [11]. This paper builds on our recent re-
sults [12, 14, 15, 17] for the nonuniform mesh technique applied to the time discretization
of the following reaction-subdiffusion problem [6] in a bounded domain Ω⊂R

d (d=1, 2,
3),

Dα
t u−△u=κu+ f (x,t) for x∈Ω and 0< t<T,

u=u0(x) for x∈Ω when t=0,
(1.1)

subject to the homogeneous Dirichlet boundary condition u=0 on ∂Ω. Here, the reaction
coefficient κ is a real constant, and Dα

t =
C
0D

α
t denotes the Caputo fractional derivative of

order α (0<α<1) with respect to time t, that is,

(Dα
t v)(t) :=

∫ t

0
ω1−α(t−s)v′(s)ds for t>0, where ωβ(t) := tβ−1/Γ(β).

1.1 Initial singularity and the nonuniform time meshes technique

In developing numerical methods for solving the subdiffusion problem (1.1), an im-
portant issue to be considered is that the solution u is typically less regular than in
the case of a classical parabolic PDE (as the limiting case α → 1). Sakamoto and Ya-
mamoto [23] showed that if the initial data u0 ∈ H2(Ω)∩H1

0(Ω), then the unique solu-
tion u∈C

(
[0,T];H2(Ω)∩H1

0(Ω)
)
, with Dα

t u∈C
(
[0,T];L2(Ω)

)
and ∂tu∈L2(Ω). However,

‖∂tu(t)‖L2(Ω)≤Cutα−1 for 0< t≤T, where the constant Cu>0 is independent of t but may
depend on T. In fact, u can only be a smooth function of t if the initial data and source
term satisfy some restrictive compatibility conditions [24].

The focus of this paper is on a second-order time discretization of (1.1). The spatial
discretization is of less interest: we apply the standard Galerkin finite element method
based on the weak form of the fractional PDE,

〈Dα
t u,v〉+〈∇u,∇v〉=κ〈u,v〉+〈 f (t),v〉 for all v∈H1

0(Ω) and for 0< t≤T,

where 〈u,v〉 denotes the usual inner product in L2(Ω). Thus, we construct the usual
space of continuous, piecewise-linear functions with respect to a partition of Ω into
subintervals (in 1D), triangles (in 2D) or tetrahedrons (in 3D) with the maximum diame-
ter h, and let Xh denote the subspace of functions satisfying the homogeneous Dirichlet
boundary condition. In the usual way, the (semidiscrete) Galerkin finite element solu-
tion uh : [0,T]→Xh is then defined by requiring that

〈Dα
t uh,χ〉+〈∇uh,∇χ〉=κ〈uh,χ〉+〈 f (t),χ〉 for all χ∈Xh and for 0< t≤T,

with uh(0)=u0h ≈u0 for a suitable u0h ∈Xh.


