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Abstract. It is reasonable to assume that a discrete convolution structure dominates
the local truncation error of any numerical Caputo formula because the fractional time
derivative and its discrete approximation have the same convolutional form. We sug-
gest an error convolution structure (ECS) analysis for a class of interpolation-type ap-
proximations to the Caputo fractional derivative. Our assumptions permit the use of
adaptive time steps, such as is appropriate for accurately resolving the initial singu-
larity of the solution and also certain complex behavior away from the initial time.
The ECS analysis of numerical approximations has two advantages: (i) to localize (and
simplify) the analysis of the approximation error of a discrete convolution formula on
general nonuniform time grids; and (ii) to reveal the error distribution information in
the long-time integration via the global consistency error. The core result in this pa-
per is an ECS bound and a global consistency analysis of the nonuniform Alikhanov
approximation, which is constructed at an offset point by using linear and quadratic
polynomial interpolation. Using this result, we derive a sharp L2-norm error estimate
of a second-order Crank-Nicolson-like scheme for linear reaction-subdiffusion prob-
lems. An example is presented to show the sharpness of our analysis.
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1 Introduction

The time-fractional diffusion equation provides a valuable tool for modeling complex
systems such as glassy and disordered media [11]. This paper builds on our recent re-
sults [12,14,15,17] for the nonuniform mesh technique applied to the time discretization
of the following reaction-subdiffusion problem [6] in a bounded domain (2 C R (d=1, 2,
3),

Diu—Au=xu+f(x,t) forxeQand0<t<T,

(1.1)
u=up(x) for x€ ) when t=0,

subject to the homogeneous Dirichlet boundary condition # =0 on 0(). Here, the reaction
coefficient  is a real constant, and D} = (D¢ denotes the Caputo fractional derivative of
order a (0 <« <1) with respect to time ¢, that is,

(D;"v)(t)::/otwl,X(t—s)v’(s)ds for t>0, where wﬁ(t)::tﬁ_l/l"([v’).

1.1 Initial singularity and the nonuniform time meshes technique

In developing numerical methods for solving the subdiffusion problem (1.1), an im-
portant issue to be considered is that the solution u is typically less regular than in
the case of a classical parabolic PDE (as the limiting case a — 1). Sakamoto and Ya-
mamoto [23] showed that if the initial data u® € H>(Q)NH}(Q), then the unique solu-
tion u € C ([0, T];H*(Q)NH{(Q)), with Dfu e C([0,T];L*(€2)) and 9;u € L*(()). However,
[0ru(t) || 1200y < Cu t*~1 for 0< +< T, where the constant C, >0 is independent of t but may
depend on T. In fact, u can only be a smooth function of ¢ if the initial data and source
term satisfy some restrictive compatibility conditions [24].

The focus of this paper is on a second-order time discretization of (1.1). The spatial
discretization is of less interest: we apply the standard Galerkin finite element method
based on the weak form of the fractional PDE,

(Dfu,v) +(Vu, Vo) =x(u,0)+ (f(t),0) forallve H}(Q)and for0<t<T,

where (u,v) denotes the usual inner product in Ly(Q)). Thus, we construct the usual
space of continuous, piecewise-linear functions with respect to a partition of () into
subintervals (in 1D), triangles (in 2D) or tetrahedrons (in 3D) with the maximum diame-
ter i, and let X;, denote the subspace of functions satisfying the homogeneous Dirichlet
boundary condition. In the usual way, the (semidiscrete) Galerkin finite element solu-
tion uy,: [0,T] — X}, is then defined by requiring that

(Dfup,x)+ (Vup, Vx)=ux(uy,x)+(f(t),x) forall xy€Xjand for0<t<T,

with u,(0) = ugy, &~ uy for a suitable ug, € Xj,.



