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Abstract. Generative adversarial networks (GANs) were initially proposed to gener-
ate images by learning from a large number of samples. Recently, GANs have been
used to emulate complex physical systems such as turbulent flows. However, a criti-
cal question must be answered before GANs can be considered trusted emulators for
physical systems: do GANs-generated samples conform to the various physical con-
straints? These include both deterministic constraints (e.g., conservation laws) and
statistical constraints (e.g., energy spectrum of turbulent flows). The latter have been
studied in a companion paper (Wu et al., Enforcing statistical constraints in generative
adversarial networks for modeling chaotic dynamical systems. Journal of Computa-
tional Physics. 406, 109209, 2020). In the present work, we enforce deterministic yet
imprecise constraints on GANs by incorporating them into the loss function of the
generator. We evaluate the performance of physics-constrained GANs on two rep-
resentative tasks with geometrical constraints (generating points on circles) and dif-
ferential constraints (generating divergence-free flow velocity fields), respectively. In
both cases, the constrained GANs produced samples that conform to the underlying
constraints rather accurately, even though the constraints are only enforced up to a
specified interval. More importantly, the imposed constraints significantly accelerate
the convergence and improve the robustness in the training, indicating that they serve
as a physics-based regularization. These improvements are noteworthy, as the conver-
gence and robustness are two well-known obstacles in the training of GANs.

AMS subject classifications: 76F99, 62P35, 91A05

Key words: Generative adversarial networks, physics constraints, physics-informed machine
learning.

†Current affiliation: California Institute of Technology, California, USA.
∗Corresponding author. Email addresses: hengxiao@vt.edu (H. Xiao), jinlong@vt.edu (J.-L. Wu)

http://www.global-sci.com/cicp 635 c©2021 Global-Science Press



636 Y. Zeng, J.-L. Wu and H. Xiao / Commun. Comput. Phys., 30 (2021), pp. 635-665

1 Introduction

1.1 Physical applications of GANs: progress and challenges

Machine learning and particularly deep learning has achieved significant success in a
wide range of commercial domain applications such as image recognition, audio recog-
nition, and natural language processing [1–5]. In recent years, machine learning has been
widely adopted in scientific applications, leading to an emerging field referred to as sci-
entific machine learning. Example scientific applications of machine learning include aug-
menting or constructing data-driven turbulence models [6–8], generating realistic anima-
tions of flows [9–12] discovering or solving differential equations [13–19].

Recently, generative adversarial networks (GANs) [20] emerged as a promising model
in machine learning. GANs construct mappings from a generic (e.g., uniform or Gaus-
sian) probability distribution to the data distribution. Once trained, such models can
generate new samples that are not in the training database but conform to the data dis-
tribution. As the training only uses unlabeled data, generative models belong to un-
supervised learning. GANs have shown promises in many scientific applications from
synthesizing CT-scan images of rocks [21, 22] to generating flow fields [12, 23, 24] or so-
lutions of ordinary, partial or stochastic differential equations [25–27]. The successful
applications to physics prompt a critical question on the capability of GANs: do they
generate samples that conform to the underlying physical constraints? These constraints
are implicitly embedded in the training data to certain accuracy, because the data are
obtained either by solving the equations that reflect these constraints or by directly ob-
serving the physical system that obey such constraints. However, the constraints are not
explicitly encoded in the GANs. In the above-mentioned applications, the generated
output are physical fields that often reside in high-dimensional spaces. This is in con-
trast to supervised learning, where the output are multi-class labels or low-dimensional
scalar and vectors (e.g., the permeability or velocity at a point). Taking the GANs based
PDE-emulator for example [26], the output temperature field discretized on a mesh of
100×100 grid points has a dimension of 104. Nevertheless, the physical laws expressed
in the form of PDEs place heavy constraints on the admissible solutions. For example,
velocity fields of fluid flows must be divergence-free due to mass conservation; temper-
ature fields are typically smooth due to the Laplace operator in the governing equation.
Such constraints dictated that admissible (i.e., physical and realistic) solutions must lie
on a low-dimensional manifold embedded in a high-dimensional space. Therefore, it is
imperative to ensure the constraint-respecting properties of GANs before using them as
trusted emulators for physical systems.

Fortunately, it has been theoretically proven that GANs are capable of preserving
all the constraints and statistics of the training data, up to the expressive capability of
the generator and discriminator neural networks, if the global optimum is achieved in
the training [20]. However, it is also well-known that traditional GANs has difficulty in
convergence and lack robustness in the training [28, 29]. Consequently, numerous efforts


