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Abstract. The radiative transfer equation is a fundamental equation in transport the-
ory and applications, which is a 5-dimensional PDE in the stationary one-velocity case,
leading to great difficulties in numerical simulation. To tackle this bottleneck, we first
use the discrete ordinate technique to discretize the scattering term, an integral with re-
spect to the angular variables, resulting in a semi-discrete hyperbolic system. Then, we
make the spatial discretization by means of the discontinuous Galerkin (DG) method
combined with the sparse grid method. The final linear system is solved by the block
Gauss-Seidal iteration method. The computational complexity and error analysis are
developed in detail, which show the new method is more efficient than the original
discrete ordinate DG method. A series of numerical results are performed to validate
the convergence behavior and effectiveness of the proposed method.
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1 Introduction

Radiation transport is a physical process of energy transfer in the form of electromagnetic
radiation which is affected by absorption, emission and scattering as it passes through
the background materials. The radiative transfer equation (RTE) is an important mathe-
matical model used to describe these interactions, finds applications in a wide variety of
subjects, including neutron transport, heat transfer, optics, astrophysics, inertial confine-
ment fusion, and high temperature flow systems, see for examples [2,12,16,20,27,40,47].

The RTE can be viewed as a hyperbolic-type integro-differential equation. Even for
the stationary monochromatic RTE, it is five-dimensional in the phase space, and hence
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cannot have a closed-form solution in general. Thus, the numerical solution of the equa-
tion is unavoidable and critical in applications. In history, the Monte-Carlo method is
a typical approach for numerical simulation (cf. [11] and the references therein). The
advantage is its simplicity and dimension-free convergence, and the weakness is its
heavy computational cost and slow convergence. Until now, there have developed many
other numerical methods as well. For the angular discretization, the typical methods in-
clude discrete ordinate methods (or SN methods) and spherical harmonic methods (or
PN method); for the spatial discretization, the typical methods include finite difference
methods and finite element methods. We refer to [6, 7, 12, 18, 20, 27, 30, 31] and refer-
ences therein for details. Due to the flexibility and easy implementation, the discrete
ordinate method is frequently used for angular discretization in practice. If the spatial
domain is regular, this semi-discrete method is also discretized by the Chebyshev spec-
tral method in [5, 17, 28]. In the case of irregular domains, the meshless method is also
used in [29,34,42]. In recent years, the positivity-preserving schemes are developed very
technically in [15, 45, 48] and an adaptive moving mesh discontinuous Galerkin method
is also reported in [47]. For numerical solvers such as source iteration and multigrid
algorithms, one can refer to [1, 13, 36, 38].

On the other hand, except the Monte-Carlo method, all the methods mentioned above
solve the problems with reduced dimensions. In this paper, we intend to attack the prob-
lem in its original form with 3-spatial variables and 2-angular variables. In this case, most
usual methods suffer from the so-called “Curse of Dimensionality”, which indicates the
low rate of convergence in terms of number of degrees of freedom due to the high di-
mensionality of the underlying problem. To the best of our knowledge, the sparse grid
method, also called the sparse tensor product method, is an effective way to overcome
the bottleneck. Historically, the idea of sparse grids can be traced back to Smoljak’s con-
struction of multivariate quadrature formulas using combinations of tensor products of
suitable one-dimensional formulas (cf. [19, 39]). More recently, the systematic and thor-
ough studies on the method can be found in [19,22,23,46]. In addition, several sparse grid
methods are devised in [21, 44] for solving the RTE based on the conforming spatial dis-
cretization. However, according to the computational experience, it is preferable to use
the discontinuous Galerkin (DG) method for spatial discretization for hyperbolic prob-
lems (cf. [9,10,14]), in order to capture non-smooth physical solutions. In [43], the sparse
grid technique combined with the DG method has been developed for elliptic equations.
This method is also applied to transport equations in [24, 25], but the scattering effect is
not considered. The adaptive analogues of their methods are also given in [25, 41].

In this paper, we are going to propose and analyze a sparse grid DG method to solve
the RTE, following the ideas in [27] and [24]. Unlike the studies in [21,44], the DG method
will be used to carry out the spatial discretization. And different from [24], we will dis-
cuss in detail the efficient solution of the 5-dimensional RTE with scattering effect. Con-
cretely speaking, the discrete ordinate technique is first applied to discretize the scatter-
ing term, an integral with respect to the angular variables, by simply picking several di-
rections spanning the solid angle, resulting in a semi-discrete coupled hyperbolic system.


