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Abstract. In this paper we propose some efficient schemes for the Navier-Stokes equa-
tions. The proposed schemes are constructed based on an auxiliary variable reformu-
lation of the underlying equations, recently introduced by Li et al. [20]. Our objective
is to construct and analyze improved schemes, which overcome some of the shortcom-
ings of the existing schemes. In particular, our new schemes have the capability to cap-
ture steady solutions for large Reynolds numbers and time step sizes, while keeping
the error analysis available. The novelty of our method is twofold: i) Use the Uzawa
algorithm to decouple the pressure and the velocity. This is to replace the pressure-
correction method considered in [20]. ii) Inspired by the paper [21], we modify the
algorithm using an ingredient to capture stationary solutions. In all cases we ana-
lyze a first- and second-order schemes and prove the unconditionally energy stability.
We also provide an error analysis for the first-order scheme. Finally we validate our
schemes by performing simulations of the Kovasznay flow and double lid driven cav-
ity flow. These flow simulations at high Reynolds numbers demonstrate the robustness
and efficiency of the proposed schemes.
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1 Introduction

The numerical resolution of Navier-Stokes equations (NSE) for incompressible fluids re-
quires solving several issues, especially in the case of unsteady flows in high Reynolds.
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Among these challenges we can quote two important ones: 1) the treatment of the cou-
pling of the velocity and pressure due to the incompressibility constraint; 2) the treatment
of the convection term.

There exist many classical methods to deal with the coupling of the velocity and pres-
sure in the Navier-Stokes equations. The most common one is certainly the projection-
type methods, either pressure correction or velocity correction, see, e.g, [3, 15, 27, 35, 37]
and the references therein. The so-called Uzawa algorithm is also an efficient way to de-
couple the velocity and pressure [5–7,23–25,34,38]. It employs a block Gauss elimination
in the discrete saddle-point problem to decouple the velocity from the pressure and yields
two positive definite symmetric systems. The Uzawa approach avoids the side effects of
numerical boundary layers, which may be caused by time-splitting and responsible for
the precision limitation of the pressure. However, the classical Uzawa system suffers
from the inverse of the Helmholtz equations involved in the pressure system. To over-
come this, Fortin et al. [7] presented some iteration methods to solve the NSE. Chen et
al. [5] proposed a Uzawa method based on the mixed finite element method to solve the
steady NSE. Recently, Shu et al. [34] developed a local and parallel Uzawa finite element
method for the generalized NSE.

In this paper we will adopt the Uzawa algorithm in the framework of the auxil-
iary variable approach, which has been found to be an efficient tool to construct stable
schemes for several types of equations. The motivation will become clear later.

Dealing with the nonlinear terms, there are two points need to be balanced: the larger
time step size, and the smaller computational cost. There are numerous works devoted
to these points [1,2,4,9,11,12,28,30,39,40]. Some classical methods treat nonlinear terms
to be fully-implicit or semi-implicit. Some of them are unconditionally stable, so that
large or relatively large time step sizes are allowed. However those schemes may lead
to time-dependent coefficient matrices, thus computational cost at each time step can be
expensive. An explicit way is usually easier and cheaper in computation, no need to re-
construct coefficient matrix at each time step, but meanwhile the restriction on time step
size suffers from stability requirement. In very recent years, the so-called scalar auxiliary
variable (SAV) approach becomes a popular way to deal with nonlinear terms. It has been
found to be a quite general method applicable to gradient flow models [14, 16, 20–22, 26,
32, 33, 41] and the NSE [20–22]. In SAV, the nonlinear terms are treated to be explicit,
the coefficient matrix is time-independent, only a set of constant coefficient equations
needs to be solved at each time step. Moreover, the unconditional stability implies that
relatively large time step is allowed in long-time simulation.

Even so, there are still some issues concerning these methods, which are worth to
consider in the Navier-Stokes approximation:

(i) The current methods in [20, 22] have a perfect stability and accuracy in unsteady
flow simulation, even with high Reynolds numbers. However the current methods could
not guarantee accuracy with large or relatively large time step in steady flow simulation,
especially with high Reynolds numbers. As a fact, it is known that the accuracy should
not depend on the time step in steady flow simulation if unconditional stability stands.


