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Abstract. We present a wavelet-based adaptive method for computing 3D multiscale
flows in complex, time-dependent geometries, implemented on massively parallel com-
puters. While our focus is on simulations of flapping insects, it can be used for other
flow problems. We model the incompressible fluid with an artificial compressibility
approach in order to avoid solving elliptical problems. No-slip and in/outflow bound-
ary conditions are imposed using volume penalization. The governing equations are
discretized on a locally uniform Cartesian grid with centered finite differences, and
integrated in time with a Runge–Kutta scheme, both of 4th order. The domain is
partitioned into cubic blocks with different resolution and, for each block, biorthog-
onal interpolating wavelets are used as refinement indicators and prediction opera-
tors. Thresholding the wavelet coefficients allows to generate dynamically evolving
grids, and an adaption strategy tracks the solution in both space and scale. Blocks are
distributed among MPI processes and the grid topology is encoded using a tree-like
data structure. Analyzing the different physical and numerical parameters allows us
to balance their errors and thus ensures optimal convergence while minimizing com-
putational effort. Different validation tests score accuracy and performance of our new
open source code, WABBIT. Flow simulations of flapping insects demonstrate its appli-
cability to complex, bio-inspired problems.
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1 Introduction

Computing multiscale flows in complex geometries, which may move or deform, is re-
quired in numerous applications, e.g., many biological flow problems such as flying in-
sects or beating hearts. This remains a major challenge for computational fluid dynam-
ics, especially in the turbulent flow regime. To simulate turbulent flows in the presence
of moving boundaries, numerical techniques are needed that allow the solution to be
tracked in both space and scale, and the numerical grid to be dynamically adapted ac-
cordingly. If the fluid-structure interaction must also be taken into account, it is all the
more difficult since the motion of the boundary is no longer known a priori, but depends
on its nonlinear interaction with the fluid. In this regard adaptive numerical discretiza-
tion methods, which can be traced back to the 1980s [6, 7], are indeed attractive. In many
cases they can be much more competitive than schemes on uniform fine grids, depend-
ing on the character of the solution. However, for adaptive discretizations two major
challenges can be identified: their actual implementation on massively parallel super-
computers and the numerical error analysis of adaptivity.

The implementation of the code is crucial to optimize computing, and two conceptu-
ally different approaches can be distinguished: one uses point-based techniques, while
the other uses block-based techniques. In the former, the error indicator determines for
each grid point whether it is significant or not (e.g., [45,58]), while in the latter significant
grid points are clustered in patches with the drawback of including non-significant points
and thus decreasing the compression rate [24]. Due to the hardware layout of modern
CPU, block-based implementations are in many cases more competitive and have become
increasingly popular during the last years, see, e.g., [62] for a recent review on available
software packages. The locally regular block data can be transferred in one contiguous
chunk to the CPU cache, which greatly increases the performance despite an increase in
the number of points.

The mathematical support for adaptivity needs to provide reliable error estimators
of the solution and, for evolutionary problems, a prediction of the grid used to compute
the next time step. For both, a variety of heuristic criteria exists, e.g., gradient-based
approaches [18]. Adaptive mesh refinement algorithms use these heuristic criteria and
are error-indicated methods because of their heuristic nature. A posteriori error estimators
[4] are mathematically rigorous but require solving expensive adjoint problems.

Wavelets and related multiresolution analysis techniques provide likewise a mathe-
matical framework and yield reliable error estimators, coupled with high computational
efficiency; thus they are well suited for developing adaptive solvers with error control. The
idea of wavelet analysis is to decompose data into contributions in both space and scale
(and possibly direction). The wavelet transform has been introduced by Grossmann and
Morlet [37], and the algorithm of the fast wavelet transform by Mallat [49]. Nonlinear
approximation [21] provides the conceptual support for adaptivity; indeed, it introduces
a systematic way to classify functions according to the sparsity of their representation in


