
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2020-0261

Vol. 30, No. 4, pp. 1232-1268
October 2021

EMPIRE-PIC: A Performance Portable Unstructured

Particle-in-Cell Code

Matthew T. Bettencourt1, Dominic A. S. Brown2,∗, Keith L. Cartwright1,
Eric C. Cyr1, Christian A. Glusa1, Paul T. Lin3, Stan G. Moore1,
Duncan A. O. McGregor1, Roger P. Pawlowski1, Edward G. Phillips1,
Nathan V. Roberts1, Steven A. Wright4, Satheesh Maheswaran5,
John P. Jones6 and Stephen A. Jarvis7

1 Sandia National Laboratories, Albuquerque, NM.
2 Department of Computer Science, University of Warwick, UK.
3 Lawrence Berkeley National Laboratory, Berkeley, CA.
4 Department of Computer Science, University of York, UK.
5 Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation
Campus, Didcot, UK
6 Atomic Weapons Establishment, Aldermaston, UK.
7 College of Engineering and Physical Sciences, University of Birmingham, UK.

Received 24 December 2020; Accepted (in revised version) 30 March 2021

Abstract. In this paper we introduce EMPIRE-PIC, a finite element method particle-
in-cell (FEM-PIC) application developed at Sandia National Laboratories. The code
has been developed in C++ using the Trilinos library and the Kokkos Performance
Portability Framework to enable running on multiple modern compute architectures
while only requiring maintenance of a single codebase. EMPIRE-PIC is capable of solv-
ing both electrostatic and electromagnetic problems in two- and three-dimensions to
second-order accuracy in space and time. In this paper we validate the code against
three benchmark problems – a simple electron orbit, an electrostatic Langmuir wave,
and a transverse electromagnetic wave propagating through a plasma. We demon-
strate the performance of EMPIRE-PIC on four different architectures: Intel Haswell
CPUs, Intel’s Xeon Phi Knights Landing, ARM Thunder-X2 CPUs, and NVIDIA Tesla
V100 GPUs attached to IBM POWER9 processors. This analysis demonstrates scala-
bility of the code up to more than two thousand GPUs, and greater than one hundred
thousand CPUs.

AMS subject classifications: To be provided by authors

Key words: PIC, electrostatics, electromagnetics, HPC, performance portability.

∗Corresponding author. Email addresses: mbetten@sandia.gov (M. Bettencourt),
Dominic.Brown@warwick.ac.uk (D. A. S. Brown)

http://www.global-sci.com/cicp 1232 c©2021 Global-Science Press



M. T. Bettencourt et al. / Commun. Comput. Phys., 30 (2021), pp. 1232-1268 1233

1 Introduction

High Performance Computing (HPC) provides huge benefit to the scientific community
and has been especially useful within fields that require experiments that may be infeasi-
ble, and/or expensive to conduct physically. As a consequence of the continually rising
computational performance of HPC systems, scientists are able to conduct research of
ever increasing complexity. This improved capability will continue to grow with the
move towards Exascale computing (the ability to carry out at least 1018 floating point
operations per second), a major milestone in the field of HPC.

This significant improvement in performance has been accompanied by an increasing
amount of diversity in modern compute architectures. For example, heterogeneous sys-
tems that make use of Graphics Processing Unit (GPU) accelerators or many-core CPUs
are rapidly becoming more prevalent as we continue to move away from the traditional
homogeneous cluster systems that were previously the norm [9]. As of June 2020, six out
of the top ten supercomputers depend on heterogeneous architectures to achieve their
compute performance [5]. The upcoming Exascale machines Aurora and Frontier will
follow this same trend by using Intel and AMD GPUs respectively. As a result, it is
now highly desirable for scientific codes to be able to perform well across a wide variety
of systems, a concept often referred to as ‘performance portability’ [59]. However, this
increase in architectural diversity brings greater difficulty in implementing production
codes that are capable of fully exploiting the available hardware resources when com-
pared to the traditional Single Program, Multiple Data (SPMD) MPI-based approach of
the past. This problem is exacerbated by the fact that each architecture requires specific
optimizations in order to achieve peak performance. Scientific codes must be able to
adapt to this changing landscape without the difficulty of developing and maintaining
several versions of the same application.

There are various standards that have been proposed to remedy this issue by provid-
ing directives to the compiler that sections of code should be run in parallel and/or on
a given device – commonly an accelerator card. These include OpenMP [16] and Ope-
nACC [31]. Another approach being considered to aid performance portability is the
use of parallel programming frameworks or libraries. Examples include Kokkos [36],
from Sandia National Laboratories (SNL), and RAJA [47], from Lawrence Livermore Na-
tional Laboratory (LLNL), both of which make use of C++ template meta-programming
to inject hardware-specific device code, targeting a system during compilation. Other no-
table examples of parallel programming frameworks include Khronos’ OpenCL [2] and
SYCL [42], and Intel’s newly developed OneAPI [4].

HPC contributes to a variety of scientific fields, with the areas of fusion energy re-
search, and the behavior of plasmas under various conditions being notable examples.
Particle-in-Cell (PIC) [14, 32, 45, 55] codes are commonly used to carry out simulations
of charged particles under the influence of electric and magnetic fields. Examples in
fusion energy research include both Inertial Confinement Fusion (ICF) and Magnetic
Confinement Fusion (MCF) devices. Such devices include the National Ignition Facil-


