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Abstract. In this paper we propose and analyze a second order accurate numerical
scheme for the Cahn-Hilliard equation with logarithmic Flory Huggins energy poten-
tial. A modified Crank-Nicolson approximation is applied to the logarithmic nonlin-
ear term, while the expansive term is updated by an explicit second order Adams-
Bashforth extrapolation, and an alternate temporal stencil is used for the surface diffu-
sion term. A nonlinear artificial regularization term is added in the numerical scheme,
which ensures the positivity-preserving property, i.e., the numerical value of the phase
variable is always between -1 and 1 at a point-wise level. Furthermore, an uncondi-
tional energy stability of the numerical scheme is derived, leveraging the special form
of the logarithmic approximation term. In addition, an optimal rate convergence es-
timate is provided for the proposed numerical scheme, with the help of linearized
stability analysis. A few numerical results, including both the constant-mobility and
solution-dependent mobility flows, are presented to validate the robustness of the pro-
posed numerical scheme.
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1 Introduction

The Allen-Cahn (AC) [3] and Cahn-Hilliard (CH) [9] equations are fundamental gradient
flow models in the description of phase transitions. For any φ∈H1(Ω), the Cahn-Hilliard-
Flory-Huggins energy functional is formulated as

E(φ)=
∫

Ω

(

(1+φ)ln(1+φ)+(1−φ)ln(1−φ)−
θ0

2
φ2+

ε2

2
|∇φ|2

)

dx, (1.1)

where Ω⊂R
d (d=2 or d=3) is a bounded domain and the point-wise bound −1≤φ≤1 is

assumed for phase field variable φ. The physical parameters ε>0 and θ0>0 are associated
with the diffuse interface width and the temperature, respectively. The CH equation is
an H−1-like conserved gradient flow of the energy functional (1.1):

∂tφ=∇·(M(φ)∇µ), (1.2)

µ :=δφE= ln(1+φ)−ln(1−φ)−θ0φ−ε2∆φ, (1.3)

where M(φ)>0 stands for the mobility function. As a consequence, the gradient struc-
ture indicates an energy dissipation law: d

dt E(φ(t)) =−
∫

Ω
M(φ)|∇µ|2dx ≤ 0. See the

related references [8, 19, 23, 28]. In this article, we assume that Ω=(0,1)3, and consider
periodic boundary conditions, for simplicity of presentation. An extension of our results
for the model with homogeneous Neumann boundary conditions is straightforward.

Of course, the most visible difficulty for the Cahn-Hilliard equation (1.2) with loga-
rithmic Flory Huggins energy potential is associated with the singularity in its derivative
as the value of φ approaches −1 or 1. In fact, the positivity property, i.e., 0< 1−φ and
0 < 1+φ, has been established at the PDE analysis level in [2, 20, 28, 53]. As a further
development, a separation property has also been justified for the 1-D and 2-D equations
at a theoretical level. This property guarantees that a uniform distance exists between
the value of the phase variable and the singular limit values. Such a distance only de-
pends on ε, θ0 and the initial data. See also the related works [1, 4, 18, 28, 33, 34, 52], et
cetera. The free energy with the logarithmic pattern is considered in many cases to be
more physically realistic than the regularly use polynomial version [23].

Regarding numerical approximation of the Cahn-Hilliard equation (1.2) with the Flory-
Huggins energy (1.1), there have been extensive works [29, 41–43, 47, 54–56, 58, 61, 65],
et cetera. Among the existing works, it is worth mentioning the pioneering work [19],
which addresses the issue of the positivity-preserving property (for 1+φ and 1−φ) when
the implicit Euler scheme is applied and analyzed. Meanwhile, a time step constraint,

∆t ≤ 4ε2

θ2
0

, must be assumed, which comes from the implicit treatment of the expansive

term. An extension to the multi-component Cahn-Hilliard flow has also been reported
in [7].

A more recent work [13] has overcome the time step restriction, making use of the
convex-concave decomposition approach. The positivity-preserving property, unique


