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Abstract. This paper proposes a high order deep neural network (HOrderDNN) for
solving high frequency partial differential equations (PDEs), which incorporates the
idea of “high order” from finite element methods (FEMs) into commonly-used deep
neural networks (DNNs) to obtain greater approximation ability. The main idea of
HOrderDNN is introducing a nonlinear transformation layer between the input layer
and the first hidden layer to form a high order polynomial space with the degree not
exceeding p, followed by a normal DNN. The order p can be guided by the regularity
of solutions of PDEs. The performance of HOrderDNN is evaluated on high frequency
function fitting problems and high frequency Poisson and Helmholtz equations. The
results demonstrate that: HOrderDNNs(p > 1) can efficiently capture the high fre-
quency information in target functions; and when compared to physics-informed neu-
ral network (PINN), HOrderDNNs(p > 1) converge faster and achieve much smaller
relative errors with same number of trainable parameters. In particular, when solving
the high frequency Helmholtz equation in Section 3.5, the relative error of PINN stays
around 1 with its depth and width increase, while the relative error can be reduced to
around 0.02 as p increases (see Table 5).
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1 Introduction

High frequency problems appear in diverse scientific and engineering applications, such
as high frequency Helmholtz equations arising from electromagnetics [28]. Although
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they usually encounter in low-dimensional space, finding numerical solutions of high
accuracy to these problems is challenging due to their highly oscillatory nature. To effi-
ciently approximate the high frequency components in the solutions, high order methods
such as spectral methods and high order FEMs are often used [7, 13, 15]. However, these
traditional numerical methods are mesh-dependent and mesh generation is hard and ex-
pensive especially in complex domains.

Recently deep learning based numerical methods for solving partial differential equa-
tions (PDEs) have attracted many attentions from scientific computing [1, 5, 8–10, 17,
19, 24]. Several novel methods have been proposed in the framework of Ritz formula-
tion [24], least square formulation [17] and Galerkin formulation [8]. All these approaches
yield promising empirical results especially for PDEs defined in irregular domains in
high dimensions where classical numerical methods suffer the issues of slow computa-
tion, instability and the curse of dimensionality (CoD) [20]. Therefore, DNNs are recog-
nized as potential tools to solve complex PDEs due to their meshless features. However,
challenges still exist when DNNs are applied to high frequency problems. One of the
most obvious challenges is that they often endow low-frequency components of the tar-
get functions with a higher priority during training, while cannot approximate the high
frequency components well, which causes the stalling of convergence in the later stage
of training. This phenomenon that DNNs have difficulty in capturing high frequency
information is named as ”F-Principle” by [11, 25] and ”spectral bias” by [23]. To over-
come this difficulty and obtain the benefits of high order methods in dealing with high
frequency components, it is worthwhile to study the introduction of high order idea into
commonly-used DNNs to improve their ability to approximate high frequency compo-
nents.

In this paper, we propose a high order deep neural network, termed HOrderDNN, by
incorporating the high order idea from FEMs into commonly-used DNNs. HOrderDNN
is described in the framework of PINN and improves the network architecture used in
PINN to obtain greater approximation capability, additional efficiency and higher accu-
racy when fitting high frequency functions and solving high frequency PDEs in complex
domains. The key idea of HOrderDNN is to insert a nonlinear transformation layer be-
tween the input layer and the first hidden layer, which transforms the inputs that are
independent coordinate components and linear with respect to themselves into a set of
basis functions from the polynomial space with degree not exceeding p. In this way,
any polynomial with degree not greater than p can be reproduced directly. Now the key
step of HOrderDNN is to choose an appropriate set of basis functions which define the
nonlinear transformation layer. Inspired by the observation in FEMs that the choice of
basis functions will affect the condition number of the discrete linear system, we investi-
gate the performances of three different kinds of basis functions, namely, monomial basis
functions, Lagrangian basis functions on equidistant nodes and Gauss-Lobatto-Legendre
(GLL) nodes. Consider the advantages of GLL nodes in spectral methods [2, 6, 21] and
its superior performance in Fig. 3, our final choice is the Lagrangian basis functions on
GLL nodes. With this specially designed nonlinear transformation layer, the proposed


