An LDG Method for Stochastic Cahn-Hilliard Type Equation Driven by General Multiplicative Noise Involving Second-Order Derivative

Li Zhou¹ and Yunzhang Li^{2,*}

¹ Department of Computational Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433, P.R. China.

² Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, Shanghai 200433, P.R. China.

Received 19 June 2021; Accepted (in revised version) 6 October 2021

Abstract. In this paper, we propose a local discontinuous Galerkin (LDG) method for the multi-dimensional stochastic Cahn-Hilliard type equation in a general form, which involves second-order derivative Δu in the multiplicative noise. The stability of our scheme is proved for arbitrary polygonal domain with triangular meshes. We get the sub-optimal error estimate $\mathcal{O}(h^k)$ if the Cartesian meshes with Q^k elements are used. Numerical examples are given to display the performance of the LDG method.

AMS subject classifications: 65C30, 60H35

Key words: Local discontinuous Galerkin method, stochastic Cahn-Hilliard type equations, multiplicative noise, stability analysis, error estimates.

1 Introduction

The Cahn-Hilliard equation was originally introduced in [2, 3] to describe complicated phase separation and coarsening phenomena in a melted alloy that is quenched to a temperature at which only two different concentration phases can exist stably. In this paper, we consider the following general stochastic Cahn-Hilliard type equation with homogeneous Neumann boundary condition, whose multiplicative noise non-linearly involves

http://www.global-sci.com/cicp

©2022 Global-Science Press

^{*}Corresponding author. *Email addresses:* lzhou110fudan.edu.cn (L. Zhou), li_yunzhang0fudan.edu.cn (Y. Li)

the second-order derivative Δu in a general form:

$$\begin{cases} du = \Delta w dt + g(\cdot, u, \nabla u, \Delta u) dW_t, & \text{in } D \times (0, T], \\ w = -a(\cdot, u, \nabla u, \Delta u), & \text{in } D \times (0, T], \\ \frac{\partial u}{\partial \vec{n}} = \frac{\partial w}{\partial \vec{n}} = 0, & \text{on } \partial D \times (0, T], \\ u(0, \cdot) = u_0(\cdot), & \text{in } D, \end{cases}$$

$$(1.1)$$

where $D \subseteq \mathbb{R}^d$ is a polygonal domain, \vec{n} stands for the unit outward normal to ∂D , and the terminal time T > 0 is a fixed number. Let $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}_{0 \le t \le T}, \mathbb{P})$ be a complete filtered probability space on which a real-valued Wiener process $W = \{W_t; t \ge 0\}$ is defined. The stochastic initial value $u_0: \Omega \times D \longrightarrow \mathbb{R}$ is given, and for each fixed $x \in D$, $u_0(\cdot, x)$ is independent with W. The real-valued functions $a,g: \Omega \times [0,T] \times D \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \longrightarrow \mathbb{R}$ are given. For each $(x,u,\vec{v},q) \in D \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}$, the stochastic processes $a(\cdot, \cdot, x, u, \vec{v}, q)$ and $g(\cdot, \cdot, x, u, \vec{v}, q)$ are adapted with respect to $\{\mathscr{F}_t\}_{t \ge 0}$. We make also the following hypotheses:

(H1) These exist two constants $\alpha > 0$ and $L_a > 0$ such that the function *a* satisfies the monotone condition

$$a\left(\omega,t,x,0,\vec{0},q\right)q \ge \alpha |q|^2, \quad \left[a\left(\omega,t,x,u,\vec{v},q\right) - a\left(\omega,t,x,u,\vec{v},q'\right)\right]\left(q-q'\right) \ge \alpha \left|q-q'\right|^2,$$

and satisfies the Lipschitz continuous condition

$$|a(\omega,t,x,u,\vec{v},q) - a(\omega,t,x,u',\vec{v}',q')| \le L_a(|u-u'| + |\vec{v}-\vec{v}'| + |q-q'|),$$

for each $(\omega, t, x, u, u', \vec{v}, \vec{v}', q, q') \in \Omega \times [0, T] \times D \times \mathbb{R}^2 \times \mathbb{R}^{2d} \times \mathbb{R}^2$.

(H2) There exists a constant $L_g > 0$ such that the function g satisfies the Lipschitz continuous condition

$$|g(\omega,t,x,u,\vec{v},q) - g(\omega,t,x,u',\vec{v}',q')| \le L_g(|u-u'| + |\vec{v}-\vec{v}'| + |q-q'|),$$

with $|g(\omega,t,x,0,\vec{0},0)| \leq L_g$, for each $(\omega,t,x,u,u',\vec{v},\vec{v}',q,q') \in \Omega \times [0,T] \times D \times \mathbb{R}^{2 \times 2d \times 2}$.

(H3) For the above constants α and L_g , the uniformly stochastic elliptic condition holds as follows

$$2\alpha - L_g^2 > 0.$$

Concerning the theoretical research for stochastic Cahn-Hilliard equation (1.1), Krylov and Rozovskii [17] first investigated the general solvability theory under the framework of Hilbert spaces by applying abstract results. After that, The existence and uniqueness of a function-valued process solution to stochastic Cahn-Hilliard equation driven by a nonlinear multiplicative noise was studied by Cardon-Weber in [4]. Recently, Wang and