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Abstract. In this paper, we develop two finite difference weighted essentially
non-oscillatory (WENO) schemes with unequal-sized sub-stencils for solving the
Degasperis-Procesi (DP) and µ-Degasperis-Procesi (µDP) equations, which contain
nonlinear high order derivatives, and possibly peakon solutions or shock waves. By
introducing auxiliary variable(s), we rewrite the DP equation as a hyperbolic-elliptic
system, and the µDP equation as a first order system. Then we choose a linear finite
difference scheme with suitable order of accuracy for the auxiliary variable(s), and
two finite difference WENO schemes with unequal-sized sub-stencils for the primal
variable. One WENO scheme uses one large stencil and several smaller stencils, and
the other WENO scheme is based on the multi-resolution framework which uses a se-
ries of unequal-sized hierarchical central stencils. Comparing with the classical WENO
scheme which uses several small stencils of the same size to make up a big stencil, both
WENO schemes with unequal-sized sub-stencils are simple in the choice of the stencil
and enjoy the freedom of arbitrary positive linear weights. Another advantage is that
the final reconstructed polynomial on the target cell is a polynomial of the same de-
gree as the polynomial over the big stencil, while the classical finite difference WENO
reconstruction can only be obtained for specific points inside the target interval. Nu-
merical tests are provided to demonstrate the high order accuracy and non-oscillatory
properties of the proposed schemes.
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1 Introduction

In this paper, we are interested in solving the Degasperis-Procesi (DP) equation

ut−utxx+4 f (u)x = f (u)xxx, (1.1)

with x∈Ω⊂R and f (u)=u2/2, and the µ-Degasperis-Procesi (µDP) equation

µ(u)t−utxx+3µ(u)ux =3uxuxx+uuxxx, (1.2)

where x∈S1=R/Z (the circle whose perimeter equals 1), and µ(u)=
∫

S1 udx denotes the
mean of u on S1. We develop two finite difference weighted essentially non-oscillatory
(WENO) schemes for solving (1.1) and (1.2) with unequal-sized sub-stencils, which pro-
vide a simpler way for the reconstruction procedure than the classical WENO schemes,
while still simultaneously maintaining high order accuracy in smooth regions and con-
trolling spurious numerical oscillations near discontinuities.

The DP equation was singled out first in [11] by an asymptotic integrability test within
a family of third order dispersive equations in the form of

ut+c0ux+γuxxx−α2utxx=(c1u2+c2u2
x+c3uuxx)x, (1.3)

with γ, α, c0, c1, c2 and c3 being real constants. The DP equation (1.1) can be transformed
from (1.3) with c1 =− 2c3

α2 , c2 = c3, see [10] for more details. It is one of the only three
equations that satisfy the asymptotic integrability condition, besides the Korteweg-De
Vries (KdV) equation (α= c2 = c3 = 0) and the Camassa-Holm (CH) equation (c1 =− 3c3

2α2 ,
c2 =

c3
2 ). The DP equation can be regarded as an approximate model of shallow water

wave propagation in small amplitude and long wavelength regime [9, 13, 17, 20], and its
asymptotic accuracy is the same as the CH equation (one order more accurate than the
KdV equation). The well-posedness of the DP equation has been studied in [6–8, 38–
41] and the cited references therein. The µDP equation is an extensive study of the DP
equation. It can be regarded as an evolution equation on the space of tensor densities
over the Lie algebra of smooth vector fields on the circle.

One of the important features of the DP type equations is that they admit not only
peakon solutions [10], but also shock waves [6, 27]. Explicit expressions of multi-peakon
and multi-shock solutions were provided in [27–29] for the DP equation, and in [21] for
the µDP equation. Another feather of the DP type equations is that they satisfy those con-
servation laws which cannot guarantee the bound of the H1-norm of the solution. Due to
these features, it is very difficult to design stable and high order accurate numerical meth-
ods for solving the DP and µDP equations. For the DP equation, the existing numerical
methods include the particle method based on the multi-shock peakon solution [16], op-
erator splitting finite difference methods [8,14], local discontinuous Galerkin (DG) meth-
ods [37], conservative finite difference methods [30], compact finite difference methods
with symplectic implicit Runge-Kutta (RK) time integration [42], direct DG methods [24],
and Fourier spectral methods [3, 35], etc. Local DG method was developed for the µDP


