
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2021-0176

Vol. 31, No. 3, pp. 966-986
March 2022

An Augmented Lagrangian Deep Learning Method

for Variational Problems with Essential Boundary

Conditions

Jianguo Huang1, Haoqin Wang1 and Tao Zhou2,∗

1 School of Mathematical Sciences, and MOE-LSC, Shanghai Jiao Tong University,
Shanghai, China.
2 LSEC, Institute of Computational Mathematics and Scientific/Engineering
Computing, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing, China.

Received 27 August 2021; Accepted (in revised version) 5 January 2022

Abstract. This paper is concerned with a novel deep learning method for variational
problems with essential boundary conditions. To this end, we first reformulate the
original problem into a minimax problem corresponding to a feasible augmented La-
grangian, which can be solved by the augmented Lagrangian method in an infinite
dimensional setting. Based on this, by expressing the primal and dual variables with
two individual deep neural network functions, we present an augmented Lagrangian
deep learning method for which the parameters are trained by the stochastic optimiza-
tion method together with a projection technique. Compared to the traditional penalty
method, the new method admits two main advantages: i) the choice of the penalty
parameter is flexible and robust, and ii) the numerical solution is more accurate in the
same magnitude of computational cost. As typical applications, we apply the new ap-
proach to solve elliptic problems and (nonlinear) eigenvalue problems with essential
boundary conditions, and numerical experiments are presented to show the effective-
ness of the new method.
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1 Introduction

Variational problems play important roles in various industrial and engineering appli-
cations, with typical examples including partial differential equations (PDEs) and eigen-
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value problems. Many classical numerical methods have been developed for such prob-
lems, e.g., the finite difference method, the spectral method, and the finite element method.
The first two methods are generally used for solving problems over regular domains
while the latter one is particularly suitable for problems in irregular domains [6, 11]. In
recent years, deep learning based techniques have been widely used to solve a variety of
variational problems [9, 14, 16, 18, 23, 24, 28, 32, 35, 39, 40]. Historically, related studies can
date back to the 1990s [12, 26]. We also refer the reader to [13] and the references therein
for a comprehensive review on machine learning from the perspective of computational
mathematics. For such kind of methods, deep neural networks (DNNs) are exploited to
parameterize the PDE solutions and appropriate parameters are identified by minimiz-
ing an optimization problem formulated from the PDEs. The most significant feature of
those methods is that they are mesh-free, and their approximation capacity has been well
studied in recent years [3, 15, 19, 21, 33].

For variational problems with natural boundary conditions, one doesn’t need to im-
pose these conditions on the admissible functions [16], so that the DNNs can easily be
used for approximation. However, for variational problems with essential boundary con-
ditions, these conditions should be imposed on the admissible functions, and this gives
rise to a significant difficulty since one cannot enforce the boundary condition in a simple
way even at the interpolation nodes for a neural network function. It is worth noting that
even in the context of finite element methods, this is also a very tough issue. In fact, one
has to use Nitsche’s trick [30], developed further by Stenberg [36], to handle this issue. As
far as we know, there are two main strategies to overcome the bottleneck in deep learning
framework:

• The first strategy is to construct neural network functions that satisfy the essential
boundary conditions exactly. For instance, if the boundary condition is given by
u= g on the boundary Γ, then we construct the approximate function by

φ(x;θ)= ℓ(x)ψ(x;θ)+ ḡ(x), (1.1)

where ℓ(x) is a known function such that on Γ it holds ℓ(x)=0, ḡ is the extension of
g to the whole domain, and ψ(x;θ) is another neural network function that is used
to approximate the solution in the domain. The main limitation of this approach is
that for problems with complex (non-regular) domains, it is in general not easy to
find explicit functions ℓ and ḡ. For details, one can refer to [4] and references therein.
It is worth mentioning that based on the formulation (1.1), one can also introduce
an additional neural network function on the boundary Γ to approximate g by a
least squares approach [34].

• Another strategy is the penalty method, where a penalty term (with a penalty pa-
rameter β) is included into the objective functional to enforce the boundary condi-
tion [16, 32, 35, 39]. This method is easy to implement. Theoretically, the penalty
parameter β should be chosen large enough, however, this may make the opti-
mization problem become ill-conditioned [31]. We also mention the deep Nitsche


