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Tuning Symplectic Integrators is Easy and Worthwhile
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Abstract. Many applications in computational physics that use numerical integrators
based on splitting and composition can benefit from the development of optimized al-
gorithms and from choosing the best ordering of terms. The cost in programming and
execution time is minimal, while the performance improvements can be large. In this
note we report the influence of term ordering for random systems and for two systems
from celestial mechanics that describe particle paths near black holes, quantifying its
significance for both optimized and unoptimized methods. We also present a method
for the computation of solutions of integrable monomial Hamiltonians that minimizes
roundoff error and allows the effective use of compensation summation.
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1 Introduction

Symplectic numerical integration by splitting the Hamiltonian and composing the flows
of the associated vector fields has become an extremely widely used technique in com-
putational science, especially computational physics and chemistry. A splitting into two
parts, H=H1+H2, together with the 3-term composition

e
1
2 hX1ehX2e

1
2 hX1 ,

is the most common and is often all that is needed. It is variously called the leapfrog,
Störmer–Verlet, or Strang splitting method. (Here Xi is the Hamiltonian vector field as-
sociated with Hamiltonian Hi, ehX is the time-h flow of the vector field X, and h is the
time step.) For example, it is the basic building block of the Hamiltonian Monte Carlo
method (see [6] for refinements).

Some Hamiltonians can only be written as the sum of more than two explicitly inte-
grable terms, say H=∑

n
i=1 Hi. In addition, some applications need order higher than two
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to achieve the required accuracy for a given amount of computational effort. Methods
of all orders exist, but are progressively more expensive. Optimized methods have been
develop that can significantly reduce discretization errors at fixed cost [4].

However, an informal survey of the current literature suggests that unoptimized com-
position methods of order 4, 6, and 8 [43] are in common use in cosmology, celestial me-
chanics, quantum mechanics, quantum statistical mechanics, solid state physics, kinetic
theory, plasma physics, molecular dynamics, optics, neural networks, and fluid mechan-
ics [2, 7–9, 11–13, 15, 16, 19–22, 25, 28, 30–32, 34, 36–39, 41, 42]. Computations in these fields
could benefit from experience gained in numerical analysis to reduce errors and error
growth at little cost either in programming or execution time.

In this note we consider four such techniques: optimized composition coefficients; the
effect of term ordering; compensated summation to reduce round-off error; and meth-
ods with processing. We report the influence of term ordering for random systems and
for two systems from celestial mechanics that describe particle paths near black holes,
confirming and quantifying its significance in both cases for both optimized and unopti-
mized methods. We also present a method for the computation of solutions of integrable
monomial Hamiltonians that minimizes roundoff error and allows the effective use of
compensation summation.

2 Optimized methods for multi-term splittings

Let the vector field X=∑
n
i=1 Xi be split into n parts, each explicitly integrable and let

χh=ehXn ◦···◦ehX1

be a first-order integrator for X. We define the adjoint χ∗
h of χh by χ∗

h =(χ−1)−h; that is,

χ∗
h =ehX1◦···◦ehXn .

Let
ψh(α)=χαsh◦χ∗

α(s−1)h
◦···◦χα2h◦χ∗

α1h. (2.1)

The second-order leapfrog method is S2,h =ψh(
1
2 , 1

2). Note that when n= 2, this reduces
to a composition that alternates steps of X1 and X2. Methods of this type designed for
n=2 and for arbitrary n have the same order [23], although the optimal coefficients may
not be the same. Nevertheless, coefficients optimised for the method (2.1) can reduce the
error significantly.

In particular, the minimal-s methods formed by recursively increasing the order from
k to k+2 by Sk,ch◦Sk,(1−2c)h◦Sk,ch with c=1/(2−21/(2k+1)) have very large error constants
and poor stability and should be avoided. The 3-stage method with k = 2, called S34,
will be used as a reference method here. (The notation indicates that it has order 4 and
uses work equivalent to 3 leapfrog steps.) Its large substeps, 1.35h, −1.70h, and 1.35h,
contribute to its large error constants and poor stability.


