
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2021-0087

Vol. 31, No. 4, pp. 1049-1082
April 2022

VAE-KRnet and its Applications to Variational Bayes

Xiaoliang Wan1,∗ and Shuangqing Wei2

1 Department of Mathematics, Center for Computation and Technology, Louisiana
State University, Baton Rouge 70803, USA.
2 Division of Electrical & Computer Engineering, Louisiana State University, Baton
Rouge 70803, USA.

Received 21 April 2021; Accepted (in revised version) 12 December 2021

Abstract. In this work, we have proposed a generative model, called VAE-KRnet, for
density estimation or approximation, which combines the canonical variational au-
toencoder (VAE) with our recently developed flow-based generative model, called KR-
net. VAE is used as a dimension reduction technique to capture the latent space, and
KRnet is used to model the distribution of the latent variable. Using a linear model
between the data and the latent variable, we show that VAE-KRnet can be more effec-
tive and robust than the canonical VAE. VAE-KRnet can be used as a density model to
approximate either data distribution or an arbitrary probability density function (PDF)
known up to a constant. VAE-KRnet is flexible in terms of dimensionality. When the
number of dimensions is relatively small, KRnet can effectively approximate the dis-
tribution in terms of the original random variable. For high-dimensional cases, we
may use VAE-KRnet to incorporate dimension reduction. One important application
of VAE-KRnet is the variational Bayes for the approximation of the posterior distri-
bution. The variational Bayes approaches are usually based on the minimization of
the Kullback-Leibler (KL) divergence between the model and the posterior. For high-
dimensional distributions, it is very challenging to construct an accurate density model
due to the curse of dimensionality, where extra assumptions are often introduced for
efficiency. For instance, the classical mean-field approach assumes mutual indepen-
dence between dimensions, which often yields an underestimated variance due to
oversimplification. To alleviate this issue, we include into the loss the maximization of
the mutual information between the latent random variable and the original random
variable, which helps keep more information from the region of low density such that
the estimation of variance is improved. Numerical experiments have been presented
to demonstrate the effectiveness of our model.
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1 Introduction

The density estimation of high-dimensional data plays an important role in unsupervised
learning, which is challenging due to the curse of dimensionality [27]. In the last decade,
deep generative modeling has made a lot of progress by incorporating with deep neu-
ral networks. Deep generative models are usually with likelihood-based methods, such
as the autoregressive models [14, 22–24], variational autoencoders (VAE) [16, 18, 21], and
flow-based generative models [3, 6–9, 19, 25, 33]. One flexible model that does not need
the likelihood is the generative adversarial network (GAN) [1, 13], which seeks a Nash
equilibrium of a zero-sum game between the generator and the discriminator. Recently,
the coupling of different modeling strategies has also been explored. The flow-based
model was coupled with GAN in [15] to obtain a likelihood for GAN; The VAE, flow-
based model and GAN were coupled in [34] for more flexibility and efficiency. The main
goal of deep generative models is to generate new data that are consistent with the un-
derlying distribution of the available data. To achieve this, a specific density model is
not a necessity, e.g., GAN manages to focus on the mapping from a standard Gaussian
to the desired data distribution without using the likelihood. Other than GANs, deep
generative models usually provide a density model, e.g., the flow-based models actually
define an invertible transport map between two random variables which yields an ex-
plicit push-forward measure. A common characteristic of deep generative models is that
they employ neural networks to model the mapping between high-dimensional inputs
and outputs whenever needed. Such a strategy is proved to be very effective for appli-
cation problems although the models are usually not easy to analyze due to the strong
nonlinearity induced by neural networks.

Classical density estimation techniques such as kernel density estimation and mixture
of Gaussians, suffer severely from the curse of dimensionality, meaning that they are only
effective for low-dimensional data. However, the approximation of high-dimensional
distributions is often expected to alleviate the computational cost of sampling a com-
plicated mathematical model. For example, a typical Uncertainty Quantification (UQ)
model is a partial differential equation (PDE) subject to uncertainty. When studying
rare events in such a system, we must have an effective strategy to reduce the number
of samples since each sample corresponds to solving a PDE. One strategy is to use the
reduced-order model to obtain the samples of the desired rare events followed by a den-
sity estimation step. The estimated distribution can then be coupled with the importance
sampling technique for variance reduction [12, 26, 31]. Another important example is the
variational Bayes [2]. Sampling strategies such as Markov Chain Monte Carlo (MCMC)
become less effective as the number of dimensions increases. The variational Bayes ap-
proach, which seeks the optimal approximation of the distribution in a family of density
models, may be more effective for high-dimensional problems than sampling strategies.

The available deep generative models usually focus on capturing the main features
of the data instead of an accurate estimation of the density for that the dimensionality
of the target data is often extremely high, e.g., high-resolution images that have mil-


