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Abstract. In recent years, physical informed neural networks (PINNs) have been
shown to be a powerful tool for solving PDEs empirically. However, numerical analy-
sis of PINNs is still missing. In this paper, we prove the convergence rate to PINNs for
the second order elliptic equations with Dirichlet boundary condition, by establishing
the upper bounds on the number of training samples, depth and width of the deep
neural networks to achieve desired accuracy. The error of PINNs is decomposed into
approximation error and statistical error, where the approximation error is given in C2

norm with ReLU3 networks (deep network with activation function max{0,x3}) and
the statistical error is estimated by Rademacher complexity. We derive the bound on
the Rademacher complexity of the non-Lipschitz composition of gradient norm with

ReLU3 network, which is of immense independent interest.
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1 Introduction

Classical numerical methods such as the finite element method are successful to solve
the low-dimensional PDEs, see e.g., [6, 7, 13, 24, 30]. However these methods may en-
counter some difficulties in both theoretical analysis and numerical implementation for
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the high-dimensional PDEs. Motivated by the facts that deep learning method for high-
dimensional data analysis has been achieved great successful applications in discrimi-
native, generative and reinforcement learning [9, 11, 28], solving high dimensional PDEs
with deep neural networks becomes an extremely potential approach and has attracted
a lot of attentions [2, 5, 10, 17, 25, 29, 32, 33]. Due to the excellent approximation ability
of the deep neural networks, several numerical schemes have been proposed to solve
PDEs with deep neural networks including the deep Ritz method (DRM) [32], physics-
informed neural networks (PINNs) [25], and deep Galerkin method (DGM) [33]. Both
DRM and DGM are applied to variational forms of PDEs, and PINNs are based on resid-
ual minimization to the differential equation, see [2, 17, 25, 29], which can be extended to
general PDEs [14, 16, 22, 23].

Despite the above mentioned deep PDEs solvers work well empirically, rigorous nu-
merical analysis for these methods are far from complete. The convergence rate of DRM
with two layer networks and deep networks are studied in [8,12,19,20], the convergence
of PINNs are given in [21, 26, 27]. In this work, we will provide the nonasymptotic con-
vergence rate of the PINNs with ReLU3 networks, i.e., a quantitative error estimation
with respect to the topological structure of the neural networks (the depth and width)
and the number of the samples. Hence it gives a rule to determine the hyper-parameters
to achieve a desired accuracy. Our contributions are summarized as follows.

Our contributions and main results

• We obtain the approximation results ReLU3 network in C2(Ω̄), see Theorem 3.1, i.e.,
∀ū∈C3(Ω̄) and for any ǫ>0, there exists a ReLU3 network uφ with depth ⌈log2d⌉+2

and width C(d,‖ū‖C3(Ω̄))
(

1
ǫ

)d
such that

‖ū−uφ‖C2(Ω̄)≤ǫ,

where d, Ω̄, C(d,‖ū‖C3(Ω̂)) stands for the dimension of x, the closure of the domain

Ω and some numerical constant that only depends on (d,‖ū‖C3(Ω̂)), respectively.

• We establish an upper bound of the statistical error for PINNs by applying the
tools of Pseudo dimension, especially we give an upper bound of the Rademacher
complexity to the derivative of ReLU3 network which is non-Lipschitz composi-
tion with ReLU3 network, via calculating the Pseudo dimension of networks with
ReLU, ReLU2 and ReLU3 activation functions, see Theorem 4.1. We prove that
∀D,W∈N and ǫ>0, if the number of training samples in PINNs is with the order

O
(
D6W2(D+logW)

(
1
ǫ

)2+δ)
, where δ is an arbitrarily positive number, then the

statistical error

E{Xk}N
k=1,{Yk}M

k=1
sup
u∈P

∣∣∣L(u)−L̂(u)
∣∣∣≤ǫ,

where L and L̂ are loss functions defined in (2.2) and (2.3) respectively.


