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Abstract. Objective functions in large-scale machine-learning and artificial intelligence
applications often live in high dimensions with strong non-convexity and massive
local minima. Gradient-based methods, such as the stochastic gradient method and
Adam [15], and gradient-free methods, such as the consensus-based optimization (CBO)
method, can be employed to find minima. In this work, based on the CBO method and
Adam, we propose a consensus-based global optimization method with adaptive mo-
mentum estimation (Adam-CBO). Advantages of the Adam-CBO method include:

• It is capable of finding global minima of non-convex objective functions with
high success rates and low costs. This is verified by finding the global minimizer
of the 1000 dimensional Rastrigin function with 100% success rate at a cost only
growing linearly with respect to the dimensionality.

• It can handle non-differentiable activation functions and thus approximate low-
regularity functions with better accuracy. This is confirmed by solving a ma-
chine learning task for partial differential equations with low-regularity solutions
where the Adam-CBO method provides better results than Adam.

• It is robust in the sense that its convergence is insensitive to the learning rate by a
linear stability analysis. This is confirmed by finding the minimizer of a quadratic
function.
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1 Introduction

The goal of this work is developing consensus-based global optimization methods to
solve high dimensional unconstrained optimization problems

θ∗=argmin
θ∈Rd

f (θ),

where the target function (loss function) f (θ) defined in R
d achieves a unique global

minimizer.
A high-dimensional nonlinear, non-convex optimization is an essential part of ma-

chine learning problems, with the target function defined in general as

f (θ)=
1

n

n

∑
i=1

‖Nθ(x̂i)− ŷi‖,

where θ is the parameter vector and Nθ represents a neural network representation.
(x̂i,ŷi)

n
i=1 is a set of labeled data, and ‖·‖ is the L2 distance between a predicted data

point and the corresponding labeled data point.
The gradient descent method, the most frequently used method in optimization, often

updates the parameters by the iteration scheme

θt+1= θt−α∇ f (θt),

where θ0 is initialized by a normal distribution with the mean and the variance specified
in [9, 13] and α is the learning rate. However, for a big labeled data set, i.e., n is tremen-
dously big, computing f in each iteration is time consuming, and the iterations often get
stuck at local minima. The stochastic gradient descent (SGD) method [2,3] approximates
f by

f̂ (θ)=
1

m

m

∑
i=1

‖Nθ(x̂i)− ŷi‖

on a randomly selected subset of the labeled data set, by choosing m points randomly
from the labeled data set with m≪ n. Note that the subset needs to be updated at each
iteration.

The SGD method with momentum term [20] damps oscillations in the SGD method
by introducing exponentially weighted moving average as the momentum

θt+1= θt−mt,

mt=γmt−1+α∇θ f̂ (θt).

The initialization of θ0 is the same as that in SGD and the momentum m0 is initialized
to be zero. In the component-wise sense, the momentum term increases for dimensions
whose gradients point toward the same direction and decreases for dimensions whose


