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Abstract. In this paper, a new mixed finite element scheme using element-wise sta-
bilization is introduced for the biharmonic equation with variable coefficient on Lips-
chitz polyhedral domains. The proposed scheme doesn’t involve any integration along
mesh interfaces. The gradient of the solution is approximated by H(div)-conforming
BDMk+1 element or vector valued Lagrange element with order k+1, while the solu-
tion is approximated by Lagrange element with order k+2 for any k≥0. This scheme
can be easily implemented and produces symmetric and positive definite linear sys-
tem. We provide a new discrete H2-norm stability, which is useful not only in analysis
of this scheme but also in C0 interior penalty methods and DG methods. Optimal con-
vergences in both discrete H2-norm and L2-norm are derived. This scheme with its
analysis is further generalized to the von Kármán equations. Finally, numerical results
verifying the theoretical estimates of the proposed algorithms are also presented.
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1 Introduction

In the first part of this paper, a new mixed finite element scheme is proposed and ana-
lyzed for the following biharmonic equation with variable coefficient:
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∆(κ∆u)= f , in Ω, (1.1a)

u=0, on ∂Ω, (1.1b)

∂u

∂n
=0, on ∂Ω, (1.1c)

where Ω ⊂ R
d(d ∈ N) is a Lipschitz polygonal or polyhedral domain, the coefficient

κ∈W1,∞(Ω) such that 0<κ0≤κ(x)≤κ1, and f ∈H−1(Ω). By using element-wise stabiliza-
tion, our scheme doesn’t involve any integration along mesh interfaces. Our scheme uses
H(div)-conforming BDMk+1 or vector valued Lagrange element with order k+1 to ap-
proximate w=∇u, and approximates u with Lagrange element with order k+2 for any
k≥ 0. The biharmonic equation with variable coefficient (1.1) has some applications in
practical problems such as bending problems of elastic plates with variable thickness [5],
the fourth-order Cahn-Hilliard equation in two or three dimension with κ as the phe-
nomenological mobility coefficient [25] in material science, etc.

The second part of this paper is related to an application of our scheme to the von
Kármán model, which can be stated as follows:

∆2ξ−[ξ,ψ]= f , in Ω, (1.2a)

∆2ψ+[ξ,ξ]=0, in Ω, (1.2b)

ξ=
∂ξ

∂n
=0, on ∂Ω, (1.2c)

ψ=
∂ψ

∂n
=0, on ∂Ω, (1.2d)

where Ω⊂R
2 is a Lipschitz polygonal domain, f ∈H−1(Ω), and the von Kármán bracket

[·,·] appearing in (1.2a) and (1.2b) is defined by

[η,φ]=
∂2η

∂x2
1

∂2φ

∂x2
2

+
∂2η

∂x2
2

∂2φ

∂x2
1

−2
∂2η

∂x1∂x2

∂2φ

∂x1∂x2
=cof(D2η) : D2φ.

Here, cof(D2η) denotes the cofactor matrix of the Hessian of η and A : B denotes the
Frobenius inner product of the matrices A and B.

In literature, there are many numerical methods available for the biharmonic equa-
tion, that is, the problem (1.1) with κ = 1. Some of them can be easily generalized to
include biharmonic problem with variable coefficients. We provide below a brief sum-
mary of results which are relevant to our present investigation.

• Numerical methods approximating both u and ∆u. The Ciarlet and Raviart (C-R) method
[16] uses u and ∆u as unknowns and thereby, gives rise to a system of Poisson prob-
lems. Then, H1-conforming finite element spaces are used to approximate both u
and ∆u, and it has no stabilization along mesh interfaces. Thus, the C-R method


