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Abstract. We apply the monotonicity correction to the finite element method for the
anisotropic diffusion problems, including linear and quadratic finite elements on tri-
angular meshes. When formulating the finite element schemes, we need to calculate
the integrals on every triangular element, whose results are the linear combination
of the two-point pairs. Then we decompose the integral results into the main and
remaining parts according to coefficient signs of two-point pairs. We apply the nonlin-
ear correction to the positive remaining parts and move the negative remaining parts
to the right side of the finite element equations. Finally, the original stiffness matrix
can be transformed into a nonlinear M-matrix, and the corrected schemes have the
positivity-preserving property. We also give the monotonicity correction to the time
derivative term for the time-dependent problems. Numerical experiments show that
the corrected finite element method has monotonicity and maintains the convergence
order of the original schemes in H1-norm and L2-norm, respectively.
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1 Introduction

In this paper, we consider the following diffusion problem
{
−∇·(A(x,y)∇u)= f , in Ω,

u= g, on Γ,
(1.1)

where
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a). Ω is an open-bounded, connected polygonal domain in R2, with boundary Γ=∂Ω.

b). A(x,y)=
(
aij(x,y)

)
i,j=1,2

is the diffusion tensor, whose entries are all Lipschitz con-

tinuous, and it is assumed to be symmetric, bounded, and uniformly positive defi-
nite on Ω, i.e., there exist some 0<γ1<γ2, such that

γ1(v,v)≤ (A(x,y)v,v)≤γ2(v,v), ∀v∈R2, ∀(x,y)∈Ω. (1.2)

c). The source term f ∈L2(Ω) is piecewise smooth and satisfies f ≥0, boundary condi-
tion g≥0.

In practical applications, Eq. (1.1) is the prototype structure of complex problems,
such as heat conduction, biological systems, plasma physics, and image processing. It
could describe the variation of quality, density, or intensity of pressure. From the per-
spective of physics and the strong extremal principles in [1], these variables are nonnega-
tive for Eq. (1.1) with boundary condition g≥0. The discrete maximum principle (DMP)
forms an important qualitative property of second-order elliptic equations in scientific
computing: if the source term is nonnegative, then the solution attains its minimum on
the boundary, and the solution is everywhere nonnegative for the problem with nonneg-
ative boundary data g. In general, since large source term variations, anisotropic diffu-
sion and extremely distorted meshes, numerical solutions of discrete schemes without
monotonicity usually carry non-physical information, which may result in the numerical
solutions with negative values, and it is thus not preferred in the application. Therefore,
the research of numerical schemes with these properties is significant.

It is well-known that the linear conforming finite element method (FEM) preserves
DMP naturally [2]. However, the finite element method may be without the DMP-
preserving property on some general meshes [3]. So scholars have studied many linear
schemes with the above properties. A class of finite volume numerical schemes sharing
both discrete conservation and discrete strong maximum principle have been proposed
in [4]. Xu and Zikatanov [5] employ a special number treatment for convection terms
so that they obtain a monotone scheme under some mild assumptions for finite element
grids. In [6], Lu et al. apply a cutoff method in the computation of nonnegative solu-
tions for anisotropic diffusion equations. In paper [7–11], authors present the sufficient
conditions for DMP-preserving numerical schemes. Mudunuru and Nakshatrala [12]
propose a robust computational framework that satisfies maximum principles. There
are some results about DMP-preserving weak Galerkin methods under some grid con-
straints in [13, 14]. Richard Liska and Mikhail Shashkov [15] propose two approaches
to enforce DMP: a posteriori correction of the discrete solution and the constrained op-
timization. Wang et al. [16] present two repair techniques for diamond schemes with
DMP-preserving property of anisotropic diffusion problems. In regions of large source
term variations, numerical schemes sometimes can cause the temperature to become neg-
ative, then algorithms based on slope limiters are proposed to fix this problem in [17].


