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Abstract. We propose in this paper a data driven state estimation scheme for gener-
ating nonlinear reduced models for parametric families of PDEs, directly providing
data-to-state maps, represented in terms of Deep Neural Networks. A major constituent
is a sensor-induced decomposition of a model-compliant Hilbert space warranting ap-
proximation in problem relevant metrics. It plays a similar role as in a Parametric
Background Data Weak framework for state estimators based on Reduced Basis con-
cepts. Extensive numerical tests shed light on several optimization strategies that are
to improve robustness and performance of such estimators.
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1 Introduction

Understanding complex “physical systems” solely through observational data is an at-
tractive but unrealistic objective if one insists on certifiable accuracy quantification. This,
in turn, is an essential precondition for prediction capability. In fact, unlike application
scenarios where an abundance of data are available, data acquisition for “Physics In-
formed Learning Task” typically relies on sophisticated sensor technology and is often
expensive or even harmful. Therefore, a central task is to develop efficient ways for fus-
ing the information provided by data with background information provided by physical
laws governing the observed states of interest, typically represented by partial differen-
tial equations (PDEs). In principle, this falls into the framework of “Physics Informed
Neural Networks” (PINN), however, with some noteworthy distinctions explained next.
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The central objective of this note is to explore a machine learning approach to state
estimation in the above sense. Our contributions concern two major aspects:

(i) In contrast to typical PINN formulations, we employ loss functions that are equiv-
alent to the error of the estimator in a norm that is imposed by the continuous mathemat-
ical model. More precisely, this norm corresponds to a stable variational formulation of the
PDE family. In other words, the generalization error for this loss function measures the
accuracy of the estimator in a problem intrinsic norm without imposing any additional
regularity properties.

(ii) When employing estimators, represented as Deep Neural Networks (DNNs), one
has to accept a significant and unavoidable uncertainty about optimization success. Due
to (i), one can at least measure the achieved accuracy at any stage of the optimization.
We therefore take this fact as a starting point for a systematic computational exploration of
a simple optimization strategy that seems to be particularly natural in combination with
ResNet architectures.

Regarding (i), the proposed approach is, in principle, applicable to a much wider
scope of problems than discussed below. Last but not least, in order to facilitate compar-
isons with other recovery schemes, specifically with methods that are based on Reduced
Basis concepts, the numerical experiments focus on elliptic families of PDEs with param-
eter dependent diffusion fields. However, for this problem class we discuss in detail two
rather different scenarios, namely diffusion coefficients with an affine parameter depen-
dence, as well as log-normal parameter dependence. It is well known that the first scenario
offers favorable conditions for Reduced Basis methods which have been well studied for
this type of models and can therefore serve for comparisons. While in this case nonlin-
ear schemes using neural networks do not seem to offer decisive advantages in terms of
achievable certifiable estimation accuracy nor computational efficiency we see an advan-
tage of the DNN approach in the second scenario because it seems that they can be better
adapted to the challenges of this problem class.

It should be noted though that the present approach shares some conceptual con-
stituents with so called One-Space methods or PBDW (Parametric Background Data
Weak) methods (see [2, 4, 10]). We therefore briefly recollect some related basic ideas
in Section 2.4. An important element is to represent the sensor functionals as elements
of the trial space U for the underlying PDE. The U-orthogonal projection to their span,
termed “measurement space”, provides a natural “zero-order approximation” to the ob-
served state. To obtain an improved more accurate reconstruction, the data need to be
“lifted” to the complement space. We view the construction of such a “lifting map” as
“learning” the expected “label” associated with a given observation, see Section 2. This,
in turn, is based on first projecting “synthetic data” in terms of parameter snapshots, to
the U-orthogonal complement of the measurement space. We then extract via SVD from
these projected data a sufficiently accurate “effective” complement space that captures
corresponding components of the solution manifold with high accuracy in U. The lifting
map is then expressed in terms of the coefficients of a U-orthogonal basis of the effective
complement space which, in turn, are represented by a neural network. The fact that


