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Abstract. The reliability of BiCGStab and IDR solvers for the exponential scheme dis-
cretization of the advection-diffusion-reaction equation is investigated. The result-
ing discretization matrices have real eigenvalues. We consider BiCGStab, IDR(S),
BiCGStab(L) and various modifications of BiCGStab, where S denotes the dimension of
the shadow space and L the degree of the polynomial used in the polynomial part. Sev-
eral implementations of BiCGStab exist which are equivalent in exact arithmetic, how-
ever, not in finite precision arithmetic. The modifications of BiCGStab we consider are;
choosing a random shadow vector, a reliable updating scheme, and storing the best in-
termediate solution. It is shown that the Local Minimal Residual algorithm, a method
similar to the ‘’minimize residual” step of BiCGStab, can be interpreted in terms of
a time-dependent advection-diffusion-reaction equation with homogeneous Dirichlet
boundary conditions for the residual, which plays a key role in the convergence anal-
ysis. Due to the real eigenvalues, the benefit of BiCGStab(L) compared to BiCGStab
is shown to be modest in numerical experiments. Non-sparse (e.g. uniform random)
shadow residual turns out to be essential for the reliability of BiCGStab. The reliable
updating scheme ensures the required tolerance is truly achieved. Keeping the best in-
termediate solution has no significant effect. Recommendation is to modify BiCGStab
with a random shadow residual and the reliable updating scheme, especially in the
regime of large Péclet and small Damköhler numbers. An alternative option is IDR(S),
which outperforms BiCGStab for problems with strong advection in terms of the num-
ber of matrix-vector products. The MATLAB code used in the numerical experi-
ments is available on GitLab: https://gitlab.com/ChrisSchoutrop/krylov-adr, a
C++ implementation of IDR(S) is available in the Eigen linear algebra library: http:
//eigen.tuxfamily.org.
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1 Introduction

Advection-diffusion-reaction (ADR) equations and their discrete approximations are ubiq-
uitous in the modeling of physical systems [1–5]. A wide variety of discretization schemes
for the ADR equation, such as finite difference, (pseudo)spectral, finite element and finite
volume methods exist. For the solution to be representative, the discretization scheme
must not only be convergent in the limit of infinitesimally fine grids, but also yield rep-
resentative results for more pragmatic grid sizes. A counterexample, is the discretization
of the ADR equation in the presence of strong advection where the central differencing
scheme yields spurious oscillations if the grid is too coarse [6, p. 83]. This discrepancy
is reflected by the eigenvalues of the exact ADR-operator and the discretized operator,
i.e., the exact operator has real eigenvalues, whereas the discretized version has complex
eigenvalues. However, for the exponential discretization scheme of [6, 7] which we use
here, the discretized version also has real eigenvalues.

After the discretization step a linear system is obtained which must be solved to ob-
tain the approximate solution. Such linear systems are of the type Ax=b, with A a gen-
erally sparse, asymmetric, but invertible matrix of size N×N. In this paper we mainly
consider 3D equations. Note that even with a modest M= 102 grid points per direction
this results in a linear system with N=106 unknowns. A robust method for solving such
linear systems is by factorizing A into a pair of lower and upper triangular matrices using
the well-known LU decomposition [8, p. 96], and subsequently computing x by solving
two triangular systems using backward and forward substitution. The main downside
of LU decomposition is that for a sparse system matrix there can be significant fill-in;
the factors L and U are not guaranteed to be sparse. As a result the time complexity of
factorizing the resulting A for discretized three-dimensional ADR-equations is in general
O(N7/3) [9].

Another approach are iterative methods, most commonly the Krylov subspace
methods such as the Conjugate Gradient (CG) method. Such methods seek succes-
sive approximations to the solution as a projection on the linear subspace Kk(A,r0) =
span{r0,Ar0,A2r0,··· ,Ak−1r0} with r0 := b−Ax0 the residual generated by some initial
guess x0. For linear systems obtained from discretizing a second order PDE with a grid
spacing proportional to N−1/3, the CG method requires O(N4/3) flops to reach a given
tolerance ǫ [9], saving a factor N compared to the LU decomposition. A second benefit is
that the memory requirement of O(N) is modest, as only the matrix itself and a constant
number of vectors of size N have to be stored. Additionally, CG is an optimal Krylov
method in the sense that in each iteration the error is minimized over the A-norm [10].

The main drawback of CG is the requirement of a symmetric, positive definite ma-
trix A. For more general invertible matrices the Faber-Manteuffel theorem [11] states


