
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2021-0256

Vol. 32, No. 2, pp. 336-363
August 2022

Frame Invariance and Scalability of Neural

Operators for Partial Differential Equations

Muhammad I. Zafar1, Jiequn Han2,∗, Xu-Hui Zhou1 and
Heng Xiao1

1 Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech,
Blacksburg, Virginia, USA.
2 Center for Computational Mathematics, Flatiron Institute, New York, USA.

Received 28 December 2021; Accepted (in revised version) 9 May 2022

Abstract. Partial differential equations (PDEs) play a dominant role in the mathemati-
cal modeling of many complex dynamical processes. Solving these PDEs often requires
prohibitively high computational costs, especially when multiple evaluations must be
made for different parameters or conditions. After training, neural operators can pro-
vide PDEs solutions significantly faster than traditional PDE solvers. In this work,
invariance properties and computational complexity of two neural operators are exam-
ined for transport PDE of a scalar quantity. Neural operator based on graph kernel net-
work (GKN) operates on graph-structured data to incorporate nonlocal dependencies.
Here we propose a modified formulation of GKN to achieve frame invariance. Vector
cloud neural network (VCNN) is an alternate neural operator with embedded frame
invariance which operates on point cloud data. GKN-based neural operator demon-
strates slightly better predictive performance compared to VCNN. However, GKN re-
quires an excessively high computational cost that increases quadratically with the
increasing number of discretized objects as compared to a linear increase for VCNN.
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1 Introduction

A wide class of important engineering and physical problems are governed by partial
differential equations (PDEs) describing the conservation laws. Extensive research ef-
forts have gone into formulating and solving these governing PDEs. Despite significant
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progress, major challenges remain related to the computational costs of solving complex
PDEs for real life problems like turbulent flows, laminar-turbulence transition and cli-
mate modeling. To avoid these prohibitively high computational costs, developing accu-
rate and efficient numerical approximations or surrogate models for PDEs has been a key
area of research [1–4]. Machine learning based models [5–9] have the potential to provide
significantly faster alternatives to the traditional methods [10, 11] of surrogate modeling.
For accuracy and physical realizability, it is desired that these machine learning based
models closely mimic the properties of the governing PDEs.

One of the key features of these PDEs is frame invariance, which is an intrinsic property
of all equations in classical mechanics from Newton’s second law to Navier Stokes equa-
tions. It signifies that the behavior of the physical systems does not depend on the origin
or orientation of the reference frame of the observer. An invariance principle reflects
a basic symmetry and is a basic requirement of all physical equations and constitutive
models [12–14]. It is related to the objectivity of modeling: different modelers choosing
different reference frames should arrive at the same answer. A model is frame-invariant
to a transformation if the transformation of the input data does not alter the output of the
function or model. In the context of fluid mechanics, any scalar variable like pressure or
velocity magnitude is independent of any translation or rotation of the reference frame.
Specifically, for example, a vector-to-scalar constitutive mapping f : q 7→τ should remain
unchanged in the frame rotated by matrix R, i.e., the same mapping should be valid for
f :Rq 7→τ. In other words, for any mapping f : q 7→τ to be frame-invariant, the mapping
f :q′ 7→τ should hold for any rotation matrix R, with q′≡Rq being the input vector in the
new, rotated coordinate system. Invariance with respect to other transformations (e.g.,
translation of origin or change of reference velocity) can be defined and interpreted sim-
ilarly. For solid mechanics, the magnitude of the deformation tensor is invariant to the
orientation of the reference frame or the origin of the frame – it is an objective quantity re-
gardless of the observer. Clearly, any modeling equations or constitutive relations should
faithfully reflect such invariance or symmetries. Furthermore, in the numerical solutions
of these PDEs, frame invariance also requires permutational invariance, which ensures
independence of the results from the order in which the discretized objects are indexed.
Examples of such objects include elements, cells, grid points, or particles, depending on
the specific numerical method used. In a hypothetical simple example, assume the scalar
τ at a given location x0 is a function of the vectors q1, q2, and q3 at three cells in the
neighborhood of x0. The output τ must remain identical whether the input is (q1,q2,q3),
(q3,q2,q1), or any other ordering of three vectors. In other words, permutation invariance
demands that τ must only depend on the set as a whole and not on the ordering of its
elements. Embedding these invariance properties in machine learning based models can
significantly improve the generalizability of learned models [15–21].

In this paper, we have chosen an airfoil problem to investigate the impact of the frame-
invariance property. However, this illustration on a simple geometry of airfoils should
not, in any way, undermine the significance and impact of frame-invariance in practical
applications. In many cases of aerodynamics simulations, it is straightforward to agree


