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Abstract. We present a novel efficient implementation of the flexible boundary con-
dition (FBC) method, initially proposed by Sinclair et al., for large single-periodic
problems. Efficiency is primarily achieved by constructing a hierarchical matrix (H -
matrix) representation of the periodic Green matrix, reducing the complexity for up-
dating the boundary conditions of the atomistic problem from quadratic to almost
linear in the number of pad atoms. In addition, our implementation is supported by
various other tools from numerical analysis, such as a residual-based transformation
of the boundary conditions to accelerate the convergence. We assess the method for
a comprehensive set of examples, relevant for predicting mechanical properties, such
as yield strength or ductility, including dislocation bow-out, dislocation-precipitate in-
teraction, and dislocation cross-slip. The main result of our analysis is that the FBC
method is robust, easy-to-use, and up to two orders of magnitude more efficient than
the current state-of-the-art method for this class of problems, the periodic array of
dislocations (PAD) method, in terms of the required number of per-atom force com-
putations when both methods give similar accuracy. This opens new prospects for
large-scale atomistic simulations — without having to worry about spurious image
effects that plague classical boundary conditions.
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1 Introduction

The advancements in hard- and software technology during the past decades have shifted
the field of materials science towards a computer-assisted discipline making use of, in
particular, atomistic simulations. Atomistic simulations can be used to study the nucle-
ation, motion, and interaction of crystalline defects, e.g., vacancies, dislocations, grain
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boundaries, voids, or cracks. In general, the goal of such studies is then to relate the
behavior of those defects to macroscopic mechanical properties, e.g., yield strength, duc-
tility, etc.

One major class of defects are line defects: the dislocations. It is well-understood that
dislocations are the main carrier of plasticity in metals and their behavior is therefore in-
trinsically tied to any of the underlying strengthening and hardening mechanisms for this
class of materials [5]. A representative behavior of long dislocations on the atomic-scale
can be simulated with the periodic array of dislocations (PAD) method [18,45], where the
periodic length in the dislocation line direction defines the intrinsic material length scale
via the spacing of, e.g., obstacles (precipitates, voids, etc.). In addition to periodic bound-
ary conditions in the dislocation line direction, the PAD method uses periodic boundary
conditions in the dislocation glide direction and free surfaces in the direction normal to
the glide plane. However, this particular choice of boundary conditions can introduce
large image stresses, with spurious effects on the dislocation motion, as demonstrated
by Szajewski and Curtin [61]. In particular, Szajewski and Curtin [61] have shown that,
for a dislocation bowing around periodic obstacles, all side lengths of the simulation cell
must be increased equally when varying the periodic length — but keeping the maxi-
mum bow-out constant — in order to maintain comparable accuracy in the final position
of the dislocation. This implies that the PAD method scales cubically with the number
of atoms which is very inefficient. To reduce this computational burden, conventional
atomistic/continuum (A/C) coupling methods (e.g., [17, 22, 34–36, 44, 54, 62, 67, 68]) can
be used to restrict atomistic resolution to some small part around the dislocation core,
but scaling the side lengths of the computational domain with the periodic length is still
required.

A natural approach that avoids the scaling issue of PAD boundary conditions is to use
A/C coupling methods with semi-infinite continuum domains using boundary element
methods (BEMs) [19, 28, 31, 39, 40]. To solve the coupled problem, Li [39, 40] further pro-
posed an alternating Schwarz method which iterates between the atomistic problem and
the BEM. A potentially more efficient method was developed by Hodapp et al. [28, 31]
who proposed a monolithic Newton-GMRes solver with Hessian stabilization. However,
the latter method is very difficult to parallelize and to integrate into existing molecular
dynamics codes. The latter is a major concern since developers of A/C coupling meth-
ods are rarely users of their own codes which is likely the reason why many interesting
approaches have been left unnoticed.

For coupling multiple codes, a much more convenient choice are domain decomposi-
tion methods, notably, in the field of A/C coupling, the flexible boundary condition (FBC)
method, originally developed by Sinclair and coworkers in the 1970s [55–57], and newer
related variants thereof [23,69] (another related method, independently developed specif-
ically for contact problems, is “Green function molecular dynamics”; see, e.g., [14, 43]).
However, an analysis of the FBC method has been developed only recently by Ehrlacher
et al. [21] and Hodapp [29] who demonstrated its excellent convergence properties. In
particular, Hodapp [29] showed that the FBC method can essentially be considered as


