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Abstract. We concentrate on the parallel, fully coupled and fully implicit solution of
the sequence of 3-by-3 block-structured linear systems arising from the symmetry-
preserving finite volume element discretization of the unsteady three-temperature ra-
diation diffusion equations in high dimensions. In this article, motivated by [M. J.
Gander, S. Loisel, D. B. Szyld, SIAM J. Matrix Anal. Appl. 33 (2012) 653–680] and [S.
Nardean, M. Ferronato, A. S. Abushaikha, J. Comput. Phys. 442 (2021) 110513], we aim
to develop the additive and multiplicative Schwarz preconditioners subdividing the
physical quantities rather than the underlying domain, and consider their sequential
and parallel implementations using a simplified explicit decoupling factor approxima-
tion and algebraic multigrid subsolves to address such linear systems. Robustness,
computational efficiencies and parallel scalabilities of the proposed approaches are
numerically tested in a number of representative real-world capsule implosion bench-
marks.
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1 Introduction

Equations of radiation hydrodynamics (RHD) model the complicated fluid motion and
energy transport processes with coupled momentum and energy exchanges in high-
energy density regime [7, 20, 25]. The RHD computations play an important role in
numerous fields including inertial confinement fusion (ICF), reentry vehicles and astro-
physics. The energy transport processes, which describe the streaming, scattering and ab-
sorption of radiation waves propagating through the diversified background media, are
often approximated by the flux-limited three-temperature (3-T) radiation diffusion equa-
tions. It should be noticed that the effects from the tanglesome multi-physics couplings,
a large spectrum of the interacting spatio-temporal scales, the inherent highly nonlinear
feature and the presence of hydrodynamic instabilities dictating hundreds of millions
of grid cells with large deformations cause significant difficulties to the discretizations,
linearization and solution algorithms. Implicit time-stepping routines are required to re-
move the constraint of time-step size, the method of frozen coefficients [17] is exploited
to assess all nonlinear terms at the preceding iteration level while numerous nonlinear it-
erations are performed to some prescribed tolerance for the solution at the next time step,
and the finite volume scheme is utilized for locally conservative considerations, resulting
in a suite of unsymmetric but positive definite and quite ill-conditioned linear systems
which must be solved at the cost of generally more than 80% of the total ICF simulation
time.

Efficient and scalable methods and software libraries on the current generation of
pre-exascale parallel computers are a pivotal technology for high-resolution and high-
fidelity simulations and analyses [3]. Two major categories of methods may be used:
direct methods and iterative methods. However, even though the well-engineered direct
solvers [1, 8, 18] are highly robust, iterative solvers may be preferred because they gen-
erally require dramatically less storage, allowing them to tackle quite large problems for
which the memory requirements of direct solvers are prohibitive. Given the matrix size
and sparsity degree of these systems, Krylov subspace methods [26] are normally the
method of choice, however, their performance needs to be boosted through appropriate
preconditioners with minimum user interventions, ideally, no need of other matrices to
devise a preconditioner.

Over the previous two decades, a substantial literatures concerning the monolithic,
block (namely, physics-based) and combined preconditioned Krylov subspace solvers
paired with certain adaptive strategies have been developed to tackle the challenging task
mentioned above, e.g., [2, 4, 5, 16, 21, 29, 32–34, 37–40] just to cite a few. It is worth noting
that a Schur complement to accelerate the convergence of the generalized minimal resid-
ual (GMRES) solver without restarting was advanced by Brown and Woodward [5], the
theoretical and practical block lower and upper triangular preconditioners were devel-
oped and analyzed by Shu et al. [29], a relaxed physical factorization preconditioner was
excogitated by Yue et al. [39], the physical-variable based coarsening two-level (PCTL)
preconditioner was originally proposed by Xu, Mo and An [33] and, more recently, fur-


