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Abstract. In this work, we study gradient-based regularization methods for neural
networks. We mainly focus on two regularization methods: the total variation and the
Tikhonov regularization. Adding the regularization term to the training loss is equiv-
alent to using neural networks to solve some variational problems, mostly in high di-
mensions in practical applications. We introduce a general framework to analyze the
error between neural network solutions and true solutions to variational problems.
The error consists of three parts: the approximation errors of neural networks, the
quadrature errors of numerical integration, and the optimization error. We also apply
the proposed framework to two-layer networks to derive a priori error estimate when
the true solution belongs to the so-called Barron space. Moreover, we conduct some
numerical experiments to show that neural networks can solve corresponding varia-
tional problems sufficiently well. The networks with gradient-based regularization are
much more robust in image applications.
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1 Introduction
Deep neural networks (DNNs), which are compositions of some linear and non-linear
mappings, have become the most popular tool in artificial intelligence. Its ability to fit

complex functions helps it achieve state-of-the-art performances and beat other methods
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by a huge margin in many areas, such as image processing, video processing, and nat-
ural language processing. For a complete introduction to deep learning, one can refer
to [1-3]. Recently, some applied mathematicians have also successfully applied DNNs
to solve some partial differential equations (PDEs) [4-10]. The main advantage of DNNs
is that they can solve very high-dimensional problems that are intractable for traditional
numerical methods. Some literature about the expressive power of DNNs are [11-14].

Though DNNSs have such great expressive power, the training of DNNSs is not easy,
especially for those having enormous amounts of parameters. One of the most common
issues in training DNNSs is overfitting, i.e., the model fits the training data well but per-
forms poorly on the testing data. Overfitting is very likely to happen when the number
of parameters is significantly larger than the number of training samples. To prevent
models from overfitting, some regularization techniques are usually applied.

Two types of regularization methods are commonly used in practice: implicit regu-
larization and explicit regularization. The implicit method is often induced by the opti-
mization scheme and network architecture design. Some popular implicit regularization
methods are early stopping, data augmentation, and dropout. Recently, [15,16] proposed
the adaptive activation functions which multiplies a learnable parameter with the input
of regular activation functions. This new design can dynamically adjust the loss func-
tion’s landscape and accelerate the convergence by avoiding local minimas. The explicit
method is introducing a regularization term directly into the loss function.

Another issue we concern about the DNNSs is stability, which is also referred to as
adversarial robustness. It has been shown that DNNs can be fooled by adding very small
perturbation to the inputs [17,18]. The algorithms to find such a perturbation is called
adversarial attacks, such as FGSM [17], PGD [19], and one-pixel attack [20]. To improve
the robustness of our networks, various adversarial defensive strategies have been de-
veloped [17,21], and most of them are in the form of explicit regularization.

Regularization plays important roles not only in deep learning but also in variational
models where the regularization terms are often designed based on some prior knowl-
edge [22-24]. One of the most popular regularization methods is the gradient-based
regularization like the total variation (TV) [22] and the Tikhonov regularization [25].
The Euler-Lagrangian equations of the regularized problems are some PDEs. Numeri-
cal methods like finite difference are commonly used to solve them. However, due to the
curse of dimensionality, most of the traditional numerical methods are only able to han-
dle low-dimensional problems. Therefore, using DNNs to approximate solutions to vari-
ational models and PDEs have attracted extensive attentions in recent years [4-6,26—-28].

For classical numerical methods, error analysis is one of the most critical parts of
the research. Usually, we would expect an explicit bound on the difference between the
numerical solution and the true solution. If the error bound depends on the computed
numerical solution, we call it a posterior error. Otherwise, we call it a priori error. How-
ever, because of the non-convexity of the problems and the randomness induced by the
optimization scheme, conducting error analysis for deep learning algorithms is difficult
in general. Recently, some generalization error analysis have been developed for PDE-



