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Abstract. The simulation for particle or soliton propagation based on linear or non-
linear Schrödinger equations on unbounded domains requires the computational do-
main to be bounded, and therefore, a special boundary treatment such as an absorbing
boundary condition (ABC) or a perfectly matched layer (PML) is needed so that the
reflections of outgoing waves at the boundary can be minimized in order to prevent
the destruction of the simulation. This article presents a new artificial neural network
(ANN) method for solving linear and nonlinear Schrödinger equations on unbounded
domains. In particular, this method randomly selects training points only from the
bounded computational space-time domain, and the loss function involves only the
initial condition and the Schrödinger equation itself in the computational domain with-
out any boundary conditions. Moreover, unlike standard ANN methods that calculate
gradients using expensive automatic differentiation, this method uses accurate finite-
difference approximations for the physical gradients in the Schrödinger equation. In
addition, a Metropolis-Hastings algorithm is implemented for preferentially selecting
regions of high loss in the computational domain allowing for the use of fewer training
points in each batch. As such, the present training method uses fewer training points
and less computation time for convergence of the loss function as compared with the
standard ANN methods. This new ANN method is illustrated using three examples.
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1 Introduction

The linear and nonlinear Schrödinger equations (SE) in an unbounded domain can be
expressed in a composite equation as follows:
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V+λ|u(x,t)|2
]

u(x,t)=0, −∞< x<∞, t>0, (1.1a)

u(x,0)=u0(x), −∞< x<∞, (1.1b)

lim
x→±∞

u(x,t)=0, t>0, (1.1c)

where i=
√
−1, u=u(x,t) is a complex-valued scalar field, V=V(x,t) is a linear potential,

the nonlinear coupling constant λ is a real number, u0 is the initial condition. The linear
SE corresponds to the case where λ= 0 while the nonlinear SE corresponds to the case
where V=0.

It is well-known that for V = 0 and λ = 0, the SE exhibits dispersive wave packet
solutions of the form

u(x,t)=

(
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πσ2

)
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e−(x−k0t)2/σ2
ei(kx−ωt−φ), (1.2)

where the time-dependent width is determined by σ=
√

1+4t2, k0 is some initial wave

number, k= k0+2tx
1+4t2 is the effective wave number, ω= 1

2
k2

0

1+4t2 is the effective frequency, and

φ= 1
2 arctan(2t) is a time dependent phase shift. For V=0 and λ<0, the SE exhibits bright

soliton behavior of the form

u(x,t)=Asech(a(x−vt))ei(kx−ωt), (1.3)

where a= A
√

|λ|, v= k, and ω= 1
2 (k

2+A2λ). For V = 0 and λ> 0, the SE exhibits dark
soliton behavior of the form

u(x,t)=Atanh(a(x−vt)+i)ei(kx−ωt) , (1.4)

where a=A
√

λ, v= k+A
√

λ, and ω= 1
2 k2+2A2λ.

The simulation for particle/soliton propagations based on the above linear/nonlinear
Schrödinger equations on unbounded domains requires the computational domain to be
bounded. Within the bounded computational domain, there are many traditional com-
putational methods for solving the above linear and nonlinear SEs, including finite differ-
ence methods [8, 28, 29, 31, 41, 44, 46, 47], finite element methods [16, 17], split-step meth-
ods [49], and pseudo-spectral methods [11], etc. However, if these numerical methods
are used without imposing proper boundary conditions, outgoing waves would reflect
back into the computational domain and destroy the simulation. To resolve this trouble,


