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Abstract. In this paper, we correct the finite volume element methods for diffusion
equations on general triangular and quadrilateral meshes. First, we decompose the
numerical fluxes of original schemes into two parts, i.e., the principal part with a two-
point flux structure and the defective part. And then with the help of local extremums,
we transform the original numerical fluxes into nonlinear numerical fluxes, which can
be expressed as a nonlinear combination of two-point fluxes. It is proved that the
corrected schemes satisfy the discrete strong extremum principle without restrictions
on the diffusion coefficient and meshes. Numerical results indicate that the corrected
schemes not only satisfy the discrete strong extremum principle but also preserve the
convergence order of the original finite volume element methods.
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1 Introduction

In this article, we study the diffusion equations with Dirichlet boundary conditions:{
−∇·(κ(x,y)∇u)= f , in Ω,
u= g, on ∂Ω,

(1.1)
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where Ω is an open bounded polygonal domain in R2 with boundary ∂Ω, the symmetric
diffusion coefficient κ(x,y)=

(
κij(x,y)

)
i,j=1,2 satisfies the uniformly elliptic condition on

Ω, i.e., there exist constants 0< c1< c2, such that

c1|ξ|2≤ (κ(x,y)ξ,ξ)≤ c2|ξ|2, ∀ξ∈R2. (1.2)

Furthermore, the source term f ∈L2(Ω), and g is a boundary function defined on ∂Ω.
Diffusion operator appears in many physical models such as reservoir modeling, and

energy transport in inertial confinement fusion. In the process of numerical simulation,
we not only require the schemes to have well convergence, but also satisfy some phys-
ical properties, such as local conservation and extreme principle. The strong extremum
principle is equivalent to the second law of thermodynamics. Numerical simulation of
some complex problems strongly depends on whether the scheme satisfies the extremum
principle, for example, the convection-dominated convection diffusion problems [1] and
the phase field problems [2–4]. However, the influence of mesh and diffusion coefficient
may lead to non-physical oscillation, and the numerical solution violates the discrete ex-
tremum principle. Many researchers focus on developing numerical schemes that satisfy
the discrete maximum principle (DMP). The finite volume methods have local conserva-
tion property, and are widely used in numerical simulation for partial differential equa-
tions [5]. The finite volume methods usually include two types: cell-centered type and
vertex-centered type.

Many scholars have made great efforts in the development of cell-centered finite vol-
ume schemes which satisfy the extremum principle [6,7]. Nordbotten et al. point out that
linear nine-point schemes cannot both unconditionally satisfy DMP and have second-
order accuracy [8]. Hence many nonlinear techniques are applied to the development
of finite volume schemes. In [9], Droniou et al. introduce the local maximum principle
(LMP) structure that ensures the discrete local extremum principle. The coefficient matrix
corresponding to the LMP structure is an M-matrix, which gives a sufficient condition
of DMP. Under a rigorous restriction on simplex meshes, which is equivalent to non-
obtuse angle conditions in two-dimensional space, Bertolazzi et al. propose a second-
order nonlinear finite volume scheme satisfying DMP for steady convection-diffusion
problems in [10]. To obtain an extremum-preserving scheme on general meshes, auxil-
iary unknowns at harmonic averaging points are used in works [11–14]. However, the
robustness of the above schemes is affected by the distribution relationship of interpo-
lation nodes and auxiliary nodes. In fact, for those schemes in [11–14], there are some
restrictions on the positions of harmonic averaging points, which lead to certain con-
straints on the geometries of mesh-cells and diffusion coefficients. In [15], Sheng and
Yuan propose an extremum-principle-preserving finite volume scheme, which can be ap-
plied to arbitrary polygonal meshes, but still has to impose some restrictions on diffusion
coefficients to ensure accurate and fast resolution of discontinuity. Based on the similar
idea, a vertex-centered finite volume scheme preserving DMP is proposed in [16]. Re-
cently, Yuan proposes a new nonlinear correction technique in [17] and applies it to a


