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Abstract. We consider the design of an effective and reliable adaptive finite element
method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first exam-
ine the two-term regularization technique for the continuous problem recently pro-
posed by Chen, Holst and Xu based on the removal of the singular electrostatic po-
tential inside biomolecules; this technique made possible the development of the first
complete solution and approximation theory for the Poisson-Boltzmann equation, the
first provably convergent discretization and also allowed for the development of a
provably convergent AFEM. However, in practical implementation, this two-term reg-
ularization exhibits numerical instability. Therefore, we examine a variation of this
regularization technique which can be shown to be less susceptible to such instability.
We establish a priori estimates and other basic results for the continuous regularized
problem, as well as for Galerkin finite element approximations. We show that the new
approach produces regularized continuous and discrete problems with the same math-
ematical advantages of the original regularization. We then design an AFEM scheme
for the new regularized problem and show that the resulting AFEM scheme is accu-
rate and reliable, by proving a contraction result for the error. This result, which is
one of the first results of this type for nonlinear elliptic problems, is based on using
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continuous and discrete a priori L* estimates. To provide a high-quality geometric
model as input to the AFEM algorithm, we also describe a class of feature-preserving
adaptive mesh generation algorithms designed specifically for constructing meshes of
biomolecular structures, based on the intrinsic local structure tensor of the molecular
surface. All of the algorithms described in the article are implemented in the Finite El-
ement Toolkit (FETK), developed and maintained at UCSD. The stability advantages
of the new regularization scheme are demonstrated with FETK through comparisons
with the original regularization approach for a model problem. The convergence and
accuracy of the overall AFEM algorithm is also illustrated by numerical approximation
of electrostatic solvation energy for an insulin protein.
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1 Introduction

The Poisson-Boltzmann Equation (PBE) has been widely used for modeling the electro-
static interactions of charged bodies in dielectric media, such as molecules, ions and col-
loids and thus is of importance in many areas of sciences and engineering, including
biochemistry, biophysics and medicine. The PBE provides a high fidelity mean-field de-
scription of the electrostatic interactions and ionic distribution of a solvated biomolec-
ular system at the equilibrium state and entails singularities of different orders at the
position of the singular permanent charges and dielectric interface. The popularity of
the PBE model is clearly evidenced by the success of software packages such as APBS,
CHARMM, DelPhi and UHBD. We summarize the mathematical PBE model in some de-
tail in Section 2, referring to the classical texts [36,48] for more physical discussions.

While tremendous advances have been made in fast numerical solution of the PBE
over the last twenty years (cf. [25,26,35] for surveys of some of this work), mathematical
results for the PBE (basic understanding of the solution theory of the PBE, as well as a
basic understanding of approximation theory for PBE numerical methods) were funda-
mentally unsatisfying, due to the following questions about the PBE and its numerical
solution which remained open until 2007:

1. Is the PBE well-posed for the dimensionless potential #?
2. What function space does the solution i lie in?

3. Can one derive a priori (energy and/or pointwise) estimates for the solution #?



