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Abstract. A novel adaptive approach to compute the eigenenergies and eigenfunc-
tions of the two-particle (electron-hole) Schrödinger equation including Coulomb at-
traction is presented. As an example, we analyze the energetically lowest exciton
state of a thin one-dimensional semiconductor quantum wire in the presence of dis-
order which arises from the non-smooth interface between the wire and surrounding
material. The eigenvalues of the corresponding Schrödinger equation, i.e., the one-
dimensional exciton Wannier equation with disorder, correspond to the energies of
excitons in the quantum wire. The wavefunctions, in turn, provide information on the
optical properties of the wire.
We reformulate the problem of two interacting particles that both can move in one
dimension as a stationary eigenvalue problem with two spacial dimensions in an ap-
propriate weak form whose bilinear form is arranged to be symmetric, continuous,
and coercive. The disorder of the wire is modelled by adding a potential in the Hamil-
tonian which is generated by normally distributed random numbers. The numerical
solution of this problem is based on adaptive wavelets. Our scheme allows for a con-
vergence proof of the resulting scheme together with complexity estimates. Numerical
examples demonstrate the behavior of the smallest eigenvalue, the ground state ener-
gies of the exciton, together with the eigenstates depending on the strength and spatial
correlation of disorder.
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1 Introduction

Semiconductors and semiconductor nanostructures, e.g., wells, wires, and dots, play a
prominent role in modern technology: computer chips are based on their electronic prop-
erties; the optical and optoelectronic properties of semiconductors are exploited in solar
cells, light emitting diodes, and lasers, and, furthermore, future applications in the area
of quantum communications and computing are expected to be within reach of current
technology [3, 15, 20, 27]. In this paper, we consider thin semiconductor quantum wires
which are essentially one-dimensional systems, see Fig. 1. This approximation is appro-
priate if the diameter is much smaller than the intrinsic electronic length scale of the prob-
lem which is the exciton Bohr radius since we study the optical absorption close to the
fundamental band gap. By optical excitation, one generates an electron-hole pair whose
states are described by a two-particle time-dependent Schrödinger equation. Due to the
unavoidable imperfections during the growth of such structures, the interface between
the wire and the surrounding material cannot be considered to be perfectly smooth. We
call this a disordered quantum wire and model it by an additional disorder potential in the
Hamiltonian describing the spatial variation of the electron and hole energies. Thus, we
analyze a model with diagonal disorder [2, 39], which has recently been used to study
linear and nonlinear optical properties of semiconductor nanostructures together with a
tight-binding model, see, e.g., [17, 25, 27, 30]. From this, we formulate a stationary eigen-
value problem in two spatial dimensions describing the two interacting one-dimensional
particles.

For the numerical solution, we seek for a highly efficient method, i.e., employing
degrees of freedom for the computation and representation of eigenenergies and eigen-
states only where actually needed. This paradigm has, from a numerical point of view,
triggered much more substantial advancements in highly accurate simulations than in-
creased computer power and larger storage systems. Thus, for us, it is indispensable
to utilize a) an adaptive method which introduces during the computation and depend-
ing on the residuals of the operator equation and singularities of the problem additional
degrees of freedom according to a user-specified accuracy. In view of extensions to quan-
tum films and a resulting partial differential operator in four space dimensions to be
considered at a later stage, we want to ensure that our method could b) systematically
be adapted to higher spatial dimensions. In addition, it is important to us to c) be able
to prove convergence of the numerical method. This means that an addition of degrees
of freedom provably reduces the numerical error. Lastly, we want to assure that d) our
method provides optimal computational complexity. This means that the algorithm has an


